A CMOS Programmable Analog Standard Cell Library in Skywater 130nm Open-Source Process

Jennifer Hasler Georgia Institute of Technology Barry Muldrey, Parker Hardy University of Mississippi

Automated Analog IC Design

What if we had an Analog Standard Cell Library?

	$\Gamma \Pi 0$	ing sin C		111110	JY
\	Call Type	Analog Cells:	Namo	Width T	
	Transconductorica	2 TA EC bios, no EC inputs		$\frac{17.02}{17.02}$ h	-1tcn = 6.
/	Amplifiers (TA)	2 TA, FG bias, no FG inputs 2 TA EG bias EG inputs (V - large)	TA2Cell_NOFG	$17.92\mu m$	
/	Ampimers (TA)	2 TA, FG bias, FG inputs (V_L range) 2 TA EG bias EG inputs (V_L small)	TA2Cell 1EG Strong	$28.09\mu \text{m}$	
		2 TA, i G bias, i G inputs (V_L small) 2 TA signal bias no EG inputs	TA2SignalBiasCell	$8.45 \mu m$	
1	Capacitors	Selectable 16 unit cap	capacitorArray01	<u>36.70<i>µ</i>m</u>	
	Cupuentors	Two separate unit caps	capacitorSize04	5.78 <i>µ</i> m	
		2 unit cap	capacitorSize03	5.79 <i>µ</i> m	
		4 unit cap	capacitorSize01	$10.42 \mu m$	
		8 unit cap	capacitorSize02	$7.97 \mu m$	
	Winner-Take-All	4 WTA stages	WTA4Stage01	14.07um	
	Ratioed Transistor	5 bit transistor module	DAC5bit01	16.58µm	
	Transmission Gates	4 Single Throw T-gates	Tgate4Single01	4.76µm	
		4 Double Throw T-gates	Tgate4Double01	$7.08 \mu m$	
		4 T-gate for prog select (V_{ini})	drainSelect01	5.42µm	
	Transistors	$3 \text{ nFETs} + 3 \text{ pFETs} (W/L\approx 1)$	Trans4small	2.80 µm	
	(nFET + pFET)	2 nFETs + 2 pFETs (W/L \approx 10)	Trans2med	$3.53 \mu m$	
		1 nFETs (W/L≈100)	nFETLarge	$4.37 \mu m$	
		1 pFETs (W/L≈100)	pFETLarge	4.64µm	
		FG Cells:		** 7* 1.1	
ype		Variations	Name	Width	V / O
r Cell (Sam	(\mathbf{C}_T)	4×2 Cell	swc4x2cell	20.12μ i	m V
			swc4x2cellOverlap	17.97μ	Ο
		4×1 Bias	swc4x1BiasCell	10.11μ	m V
		4×1 cell	cellAttempt01	10.08μ	m V
e cell (Same	e C _T)	2 x 1 FG Biases	FGBias2x1cell	11.53µ	m V
		2 x1 FG Transistors	FGtrans2x1cell	11.52μ i	m V
racterization	n cell	Tun, pFET (inj), Capacitors	FGcharacterization(29.95μ	m V+O

Analog Std Cell Summary

Varactor (V) and Overlap (O) capacitors

First Analog Standard Cell library \rightarrow a start of the library

Excited to see the experimental results of this library

Already expanding to a complete set:

- SSCS: a few additional variations (Nov run): direct & indirect FG structures
- Analog IC core elements (class development): More TA, Amplifiers, Comparitors, ADCs) All open source in Skywater 130nm CMOS

The hope is that analog standard cells increases the impact of every Analog IC designer, and increases the awareness of their artistry.