
© INS-UoU 2020 All rights reserved

University of Utah 1
November 4th, 2021

LSOracle 2.0: Capabilities, Integration, and
Performance

Scott Temple, Ashton Snelgrove, Walter Lau, Pierre-Emmanuel
Gaillardon

Department of Electrical and Computer Engineering – University of Utah

© INS-UoU 2020 All rights reserved

University of Utah 2

Outline

• Background
– Logic Synthesis
– Majority-Inverter Graphs

• LSOracle overview
– Architecture
– Benefits
– New in Version 2.0

• Benchmarking
– Runtime
– QoR

• Ongoing work and future directions
• Conclusions

© INS-UoU 2020 All rights reserved

University of Utah 3

Logic Synthesis in the EDA Flow

• EDA: Behavioral synthesis, logic synthesis, physical synthesis
• Logic Synthesis is at the forefront of EDA:

– Strong impact on downstream tools
– TTs, BDDs, DAGs

3

HDL Description

Behavioral
Synthesis

Logic Synthesis

Physical Design

DAG
representation

DAG
Optimization

Technology
mapping

Technology Independent
Optimization

b ac

S co

AIG :
7 nodes

4 levels of logic

a c b

S

MIG:
3 nodes

2 levels of logic

Full Adder Representation

c
o

© INS-UoU 2020 All rights reserved

University of Utah 4

DAGs in Logic Synthesis

4

b ac
S co

AIG :
7 nodes

4 levels of logic

a c b

S

MIG:
3 nodes

2 levels of logic

Full Adder Representation

c
o

• And-Inverter Graph (AIG)
• Nodes: AND2
• Edges: Regular or NOT
• Excellent for random/control

logic
• Popular in open-source tools

• Majority-Inverter Graph
(MIG)
• Nodes: MAJ3
• Edges: Regular or NOT
• Superset of AIG
• Excellent for arithmetic logic

• Others also possible
(XAG, XMG)

© INS-UoU 2020 All rights reserved

University of Utah 5

Why Mixed Logic Synthesis?

5

• No one approach is best for all types of circuit
• Real world designs typically have multiple types of logic
• A combination of optimization methods is desirable for

large designs

Majority
Intensive

And
Intensive

Apple A8. Photo: TechInsights Inc.

How to automatically
select the right

representation and
optimizer for each part
of a complex design?

© INS-UoU 2020 All rights reserved

University of Utah 6

LSOracle

• Key Idea: Heterogeneous logic
synthesis tailored to the
underlying logic

• Partition Circuit into minimally
dependent sections

• Optimize partitions selecting
MIG or AIG for optimization

• Merge logic into a unified
network and pass to
techmapper and downstream
tools

© INS-UoU 2020 All rights reserved

University of Utah 7

Benefits of Mixed Synthesis

• Optimized with automatic
AIG/MIG mixed synthesis

• Ibex
– Small RISC V core
– SKY130HD library
– 9% delay reduction

• BlackParrot
– Linux capable RISC V core
– Nangate45 library
– 21% delay reduction

Delay Improvements
with Mixed Synthesis vs

stock OpenROAD

Significant reduction in delay after P&R across multiple
designs and technology libraries

© INS-UoU 2020 All rights reserved

University of Utah 8

New in Version 2

• Reduced runtime
• XAG and XMG support
• New optimization methods:

– Functional reduction
– Exact synthesis

• Additional optimization recipes
• Experimental features:

– Native ASIC mapper
– Equivalence checking

• Many under the hood
improvements

• Included with OpenROAD

© INS-UoU 2020 All rights reserved

University of Utah 9

Results: Runtime

On average 10× faster than previous release over
EPFL benchmarks

© INS-UoU 2020 All rights reserved

University of Utah 10

PPA Results: EPFL Benchmarks

• Normalized against previous version
• AIG mode for control benchmarks, MIG for arithmetic
• Average

• 8.5% delay reduction
• 5.5% area increase

© INS-UoU 2020 All rights reserved

University of Utah 11

PPA Results: Mixed Synthesis

• Tested mixed synthesis mode on two circuits
• Chip bridge (OPDB): 13% delay reduction
• PicoRV: 10% delay reduction

© INS-UoU 2020 All rights reserved

University of Utah 12

Ongoing Work & Getting LSOracle

• Current development is focused on:
– Timing-driven synthesis
– Native technology mapping
– Applying machine learning

• LSOracle is MIT licensed and is available:
– On Github: https://github.com/lnis-uofu/LSOracle
– On Docker Hub: https://hub.docker.com/orgs/lnis
– On Launchpad: https://launchpad.net/lsoracle
– As part of OpenROAD

https://launchpad.net/lsoracle

© INS-UoU 2020 All rights reserved

University of Utah 13

Laboratory for NanoIntegrated Systems
Department of Electrical and Computer Engineering

MEB building – University of Utah – Salt Lake City – UT – USA

Thank you for your attention

