LSOracle 2.0: Capabilities, Integration, and Performance

Scott Temple, Ashton Snelgrove, Walter Lau, Pierre-Emmanuel Gaillardon

Department of Electrical and Computer Engineering – University of Utah

November 4th, 2021

Outline

- Background
 - Logic Synthesis
 - Majority-Inverter Graphs
- LSOracle overview
 - Architecture
 - Benefits
 - New in Version 2.0
- Benchmarking
 - Runtime
 - QoR
- Ongoing work and future directions
- Conclusions

Logic Synthesis in the EDA Flow

- EDA: Behavioral synthesis, logic synthesis, physical synthesis
- Logic Synthesis is at the forefront of EDA:
 - Strong impact on downstream tools
 - TTs, BDDs, **DAGs**

Full Adder Representation

DAGs in Logic Synthesis

Full Adder Representation

- And-Inverter Graph (AIG)
 - Nodes: AND2
 - Edges: Regular or NOT
 - Excellent for random/control logic
 - Popular in open-source tools
- Majority-Inverter Graph (MIG)
 - Nodes: MAJ3
 - Edges: Regular or NOT
 - Superset of AIG
 - Excellent for arithmetic logic
- Others also possible (XAG, XMG)

Why Mixed Logic Synthesis?

- No one approach is best for all types of circuit
- Real world designs typically have multiple types of logic
- A combination of optimization methods is desirable for large designs

Apple A8. Photo: TechInsights Inc.

LSOracle

- Key Idea: Heterogeneous logic synthesis tailored to the underlying logic
- Partition Circuit into minimally dependent sections
- Optimize partitions selecting MIG or AIG for optimization
- Merge logic into a unified network and pass to techmapper and downstream tools

Benefits of Mixed Synthesis

Significant reduction in delay after P&R across multiple designs and technology libraries

- Optimized with automatic AIG/MIG mixed synthesis
- Ibex
 - Small RISC V core
 - SKY130HD library
 - 9% delay reduction
- BlackParrot
 - Linux capable RISC V core
 - Nangate45 library
 - 21% delay reduction

Delay Improvements with Mixed Synthesis vs stock OpenROAD

THE UNVERSITY OF UN

New in Version 2

- Reduced runtime
- XAG and XMG support
- New optimization methods:
 - Functional reduction
 - Exact synthesis
- Additional optimization recipes
- Experimental features:
 - Native ASIC mapper
 - Equivalence checking
- Many under the hood improvements
- Included with OpenROAD

Results: Runtime

On average 10× faster than previous release over EPFL benchmarks

PPA Results: EPFL Benchmarks

- Normalized against previous version
- AIG mode for control benchmarks, MIG for arithmetic
- Average
 - 8.5% delay reduction
 - 5.5% area increase

PPA Results: Mixed Synthesis

- Tested mixed synthesis mode on two circuits
- Chip bridge (OPDB): 13% delay reduction
- PicoRV: 10% delay reduction

@ INS-LIGH 2020 All rights reserved

Ongoing Work & Getting LSOracle

- Current development is focused on:
 - Timing-driven synthesis
 - Native technology mapping
 - Applying machine learning
- LSOracle is MIT licensed and is available:
 - On Github: https://github.com/Inis-uofu/LSOracle
 - On Docker Hub: https://hub.docker.com/orgs/Inis
 - On Launchpad: <u>https://launchpad.net/lsoracle</u>
 - As part of OpenROAD

University of Utah 12

© INS-LIGH 2020 All rights resen

Thank you for your attention

Laboratory for NanoIntegrated Systems Department of Electrical and Computer Engineering MEB building – University of Utah – Salt Lake City – UT – USA