
LSOracle 2.0: Capabilities, Integration, and Performance

Scott Temple, Ashton Snelgrove, Walter Lau Neto, Pierre-Emmanuel Gaillardon
LNIS, University of Utah, Salt Lake City, Utah, USA

pierre-emmanuel.gaillardon@utah.edu

LSOracle is a tool for logic synthesis which uses several
directed acyclic graph representations concurrently when op-
timizing a design; for example a combination of And-Inverter
Graphs and Majority-Inverter Graphs. Version 2.0 of LSOracle
has recently been released. This paper describes the changes
made in version 2.0 and presents recent benchmark results
compared to earlier versions of the tool. Execution time has
been reduced by a factor of ten with an accompanying 5-10%
improvement in area-delay product.
Index Terms—EDA, Logic Synthesis, VLSI, Open Source

I. INTRODUCTION

Logic synthesis is the conversion of a circuit design from
Register Transfer Level (RTL) to a technology dependent netlist
representation, such as standard cells or FPGA look-up tables.
Because all downstream Electronic Design Automation (EDA)
tools operate on the netlist generated by the logic synthesis
tool, its performance is critical to the overall performance of
the EDA toolchain.

In general, logic synthesis consists of two steps: technology
independent optimization, which minimizes the logic of a
given design in an abstract sense, and technology dependent,
which maps the logic onto a library of elements such as
manufacturable standard cells or FPGA resources while
optimizing the mapping for some cost function. The focus of
this work is on technology independent optimization.

The most common technique for technology independent
logic optimization is the use of Boolean networks, Directed
Acyclic Graphs (DAGs) which describe the logic using nodes
representing Boolean functions and edges which describe
connections between them. The most common DAG for logic
synthesis is the And-Inverter Graph (AIG), which consists of
AND-of-two nodes connected by edges which may optionally
be inverted [1]. AIG synthesis is well known, and is the
basis for the popular open-source synthesis tool ABC [2].
Optimization with other types of DAG is possible, however,
and research has shown that the choice of DAG impacts the
achievable optimization results. For example, Majority-Inverter
Graphs (MIGs), structures similar to AIGs in which nodes
represent the majority of three function, have benefits when
optimizing arithmetic logic because they efficiently represent
the carry operator [3]. Similarly, XOR-And Graphs (XAGs)
have benefits for hardware security, where minimizing the
number of and gates may be desirable [4]. Each type of
DAG is a compromise, performing well for some categories
of circuit and less well for others. When a circuit is highly
heterogeneous, no single DAG will be ideal for all regions.

LSOracle is a logic synthesis tool designed to automatically
partition circuits and use the appropriate DAG when optimizing
each partition, improving performance on heterogeneous
circuits where no single representation is ideal [5]. It has
recently been updated to version 2.0, featuring improved
quality of results (QoR), greatly reduced runtime, and a variety

of new features which may be of interest to researchers and
advanced users.

The remainder of this paper is organized as follows: Section
II presents the LSOracle architecture. Section III discusses
recent changes made in version 2.0 of LSOracle and presents
recent benchmark results and a comparison of version 2 with
the previous release. Section IV gives a brief overview of our
development roadmap, and section V concludes.

II. LSORACLE FLOW

The fundamental mixed synthesis flow used in LSOracle is
presented in Fig. 1. This is the flow used in the default mode
for the software. When used manually, many other workflows
are possible.

Fig. 1. LSOracle’s mixed synthesis architecture, showing the three major
steps: partitioning, classification/optimization, and circuit merging.

A. Step 1: Partitioning

The first step in LSOracle’s mixed synthesis is to partition
the circuit into smaller sub-networks. By default, this is done
with K-way hypergraph partitioning using KaHyPar [6]. In a
traditional graph, each edge connects exactly two vertices; a
hypergraph is a generalization in which each edge can connect
an arbitrary number of vertices, making them a convenient
representation of a Boolean network. The number of partitions
can be chosen in several ways, but the default is to fix the
average partition size at a constant.



TABLE I
RUNTIME COMPARISON, LSORACLE VERSION 2.0 VS PREVIOUS STABLE

Benchmark Previous (AIG) V2.0 (AIG) Reduction Previous (MIG) V2.0(MIG) Reduction
adder 6.2 1.0 83% 1.5 0.4 74%
arbiter 144.6 2.4 98% 9.4 5.1 45%
bar 25.5 1.1 96% 3.2 1.1 65%
log2 3383.0 32.8 99% 3292.6 120.4 96%
max 113.8 1.2 99% 32.6 1.8 95%
mem ctrl 108.1 36.3 66% 746.5 29.7 96%
multiplier 1949.1 26.3 99% 1304.7 35.7 97%
sin 1245.2 4.4 99% 84.7 4.5 95%
sqrt 3467.0 16.0 99% 1132.5 14.2 99%
square 872.0 9.6 99% 403.7 10.7 97%
voter 628.7 6.3 99% 133.4 5.4 96%

B. Step 2: Classification and Optimization

After partitioning, the tool determines which DAG repre-
sentation best fits each sub-network. By default this is done
using an area-delay product (ADP) oriented heuristic which
considers DAG size and logic depth after optimization with a
standardized optimization recipe for each DAG. The standard
recipe consists of a combination of rewriting, balancing, and
refactoring, similar to the resyn2 script in ABC.

C. Step 3: Merging

When each partition has been optimized, they are reassem-
bled into a single optimized network. In order to preserve the
optimizations, this network type must be general enough to
include each DAG used in step 2. For example, in the default
AIG/MIG mixed synthesis flow, the final network is an MIG,
as one majority node can represent a 2-input AND function
by adding a constant input, but the reverse is not possible
without expanding the network size.

After technology independent optimization, the network is
mapped onto either FPGA look-up tables or ASIC standard
cells. LSOracle is frequently used in conjunction with its
supplied Yosys plugin, so when LSOracle is finished merging
the network, it returns control to the Yosys script that invoked
it [7].

III. LSORACLE VERSION 2.0

The recently released version 2.0 of LSOracle has brought
many changes. Some are engineering changes which are not
evident to the end user: all libraries have been updated and
moved into submodules; unit testing is being integrated with
the codebase; the continuous integration/continuous delivery
(CI/CD) pipeline has been dramatically improved, etc. User-
facing changes may broadly be divided into new features,
improved integration with other EDA tools, and runtime and
QoR improvements.

A. New Features

Because LSOracle strives to be automatic, the average
user will not notice many of the new features in version
2.0. They are available to advanced users, however, and
over the next several months many will be integrated with
the automatic mixed synthesis mode, improving performance

without changing the user experience. Notable new features
include:

• Native standard cell mapping;
• Improved LUT mapping;
• Expanded support for XAG and XMG networks;
• Functional reduction;
• Exact synthesis support;
• Native equivalence checking;
• Structure aware partitioning [8].

B. Toolchain Integration

Three major changes have been made regarding LSOracle’s
integration with other EDA tools. Most significantly, LSOracle
is now included with OpenROAD by default [9]. OpenROAD
users may enable LSOracle by setting the USE LSORACLE
environment variable. This integration has not yet been updated
to use LSOracle 2.0; the transition will be completed during
Q4 2021. In addition, the LSOracle and the LSOracle Yosys
plugin repositories have been merged, simplifying installation.
The plugin has also been updated, fixing several bugs and
modifying the default synthesis recipes. Finally, a Yosys
frontend is available for the version of the commercial Verific
parser which is licensed through the DARPA Toolbox Initiative.
This integration provides DARPA performers a very robust
Verilog frontend for OpenROAD or any other toolchain using
Yosys.

C. Performance

Updates to the EPFL Logic Synthesis libraries [10], used in
LSOracle, and adjustments to the default optimization recipes
for each DAG have resulted in changes in both runtime and
QoR. In general, runtime has been substantially reduced, while
QoR shows overall improvement and a trend toward reduced
delay at the expense of increased area compared to the previous
version of LSOracle.

Table I shows the run time of the AIG and MIG modes of
LSOracle version 2.0 compared to the most recent pre-refactor
version over a subset of the EPFL benchmarks [11]. AIG and
MIG homogeneous modes were used in this test to remove
the effect of partitioning and focus on logic synthesis speed.
The subset of benchmarks was chosen by, for convenience,
excluding any benchmark which did not complete the pre-
refactor MIG optimization in one hour. Of those that did not
time out, all benchmarks which completed the pre-refactor
MIG optimization in less than one second were also excluded
due to poor reproducibility caused by other tasks running. Run



Fig. 2. Area, delay and ADP of LSOracle version 2.0 on a selection of EPFL benchmarks after technology mapping onto the Skywater 130HD library,
normalized against the previous version of LSOracle. Arithmetic benchmarks optimized with MIG, control benchmarks with AIG.

time benchmarks were performed on an Intel i5-7360U with
8GB RAM running Mac OS 11.4. On average, version 2.0
reduces run time for AIG optimization by 94% and MIG run
time by 87%. Averaging all run times, version 2.0 is an order
of magnitude faster than the previous stable release.

Fig. 2 shows the performance of the new version compared
to the previous stable release over a subset of the EPFL
benchmarks after technology mapping with Yosys onto the
SKY130HD library. The same subset of benchmarks used in
the run time comparison was used for this analysis. Because
the EPFL benchmarks are divided into arithmetic and control
logic benchmarks, this set was used to compare the logic
synthesis performance without any influence from partitioning.
AIG optimization was used for control logic and MIG for
arithmetic logic for both versions. In general, version 2.0
reduces delay more successfully than the previous version of
LSOracle, but at the cost of increased area. On average, delay
was reduced 8.5% and area was increased by 5.5%, leading
to an average 5.2% reduction in area-delay product (ADP).

Finally, fig. 3 and fig. 4 show improvements in mixed
AIG/MIG synthesis performance on two real world bench-
marks: picoRV and the chip bridge from the Open Piton
Design Benchmark (OPDB) [12] [13]. LSOracle results were
obtained using the Yosys plugin with default settings. Results
in both figures are normalized against a Yosys flow which
calls ABC’s resyn2rs script rather than LSOracle. Technology
mapping and all other aspects of the scripts are identical for all
optimization methods. In both cases version 2.0 shows reduced
delay and slightly increased area compared to the previous
version, consistent with the trend seen in the homogeneous
synthesis experiments. For picoRV, the delay reduction is
10.0%, with a corresponding 5.4% reduction in ADP. For
chip bridge the figures are 13.2% and 11.8%, respectively.
ADP improvements over optimization with resyn2rs were
20.9% for picoRV and 16.8% for chip bridge.

Fig. 3. Comparison of LSOracle 2.0 (LSO 2.0) and previous LSOracle
(LSO) for the PicoRV32 benchmark after mixed synthesis optimization using
the LSOracle Yosys plugin and technology mapping onto the SKY130HD
library using Yosys. Results normalized against ABC performance for each
value. As seen in the EPFL benchmark results above, the updated version of
LSOracle improves delay and ADP compared to the previous version.

IV. FUTURE ROADMAP

LSOracle is in active development, and changes are pub-
lished regularly on the Github repository [14].

Current development is focused on two related goals: timing
driven synthesis and improving technology mapping. OpenSTA
has been integrated with the application, as has a native
standard cell mapper and an array of timing and area oriented



Fig. 4. Comparison of LSOracle 2.0 (LSO 2.0) and previous LSOracle (LSO)
for the OPDB chip bridge benchmark after mixed synthesis optimization
using the Yosys plugin and technology mapping onto the SKY130HD library
using Yosys. Results normalized against ABC performance for each value.

optimization recipes, bringing timing driven synthesis closer
to reality [15]. At the same time, an improved technology
mapper is being developed with support for multi-output gates,
addressing a long standing limitation of open-source EDA
tools. Besides these major efforts, development is underway
on the following:

• LUT synthesis tailored for OpenFPGA generated fabrics;
• Improved integration with Yosys through native RTLIL

I/O;
• Post placement & routing physical resynthesis when used

with OpenROAD;
• Improving technology mapping with machine learning;
• Integrating hardware security metrics into the logic

synthesis process;
• Improving performance when used with high-level syn-

thesis tools through custom optimization recipes.
Community contributions, feature requests, and bug reports

are welcome.

V. CONCLUSION

For the average user, the newest version of LSOracle gives
10% lower delay and runs in 10% of the time. For researchers,
developers, and certain niche users, version 2.0 brings a host
of interesting features including novel partitioning techniques,
a standard cell mapper which can operate natively on MIGs,
a variety of optimization recipes for each DAG, and robust
XAG and XMG support. In addition, long requested features
like incremental timing and support for mapping to multi-
output gates are now under active development and should be
released by early 2022.

LSOracle is now distributed with OpenROAD; many users
interested in ASIC synthesis will find that they already have a
copy and can add mixed synthesis to their workflow simply by
setting an environment variable. For other applications, besides

source code, Docker images are available on Docker Hub [16]
and Ubuntu binary packages are available on Launchpad [17].

REFERENCES

[1] A. Mishchenko and R. Brayton, “Scalable Logic Synthe-
sis using a Simple Circuit Structure,” IWLS, 2006.

[2] Berkeley Logic Synthesis and Verification Group. “Abc:
A system for sequential synthesis and verification.”
http://www.eecs.berkeley.edu/ãlanmi/abc/.

[3] L. Amarú, P.-E. Gaillardon, and G. De Micheli,
“Majority-inverter graph: A new paradigm for logic
optimization,” IEEE TCAD, vol. 35, no. 5, pp. 806-819,
2016.

[4] E. Testa, M. Soeken, L. Amarú, and G. De Micheli,
“Reducingthe multiplicative complexity in logic networks
for cryptographyand security applications,” DAC, 2019.

[5] M. Austin, S. Temple, W. L. Neto, L. Amarù, X. Tang,
and P. Gaillardon, “A scalable mixed synthesis framework
for heterogeneous networks,” DATE, 2020.

[6] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke,
P. Sanders, and C. Schulz, “k-way hypergraph parti-
tioning via n-level recursive bisection,” ALENEX, 2016.

[7] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog
synthesis suite,” Austrochip, 2013.

[8] A. Snelgrove, S. Temple, and P. Gaillardon, “Structure
Aware Partitioning for Mixed Logic Synthesis,” IWLS,
2021.

[9] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi,
A. Hosny, A. B. Kahng, and et al., “Toward an open-
source digital flow: First learnings from the openroad
project,” DAC, 2019.

[10] M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli,
“The EPFL logic synthesis libraries,” arXiv:1805.05121,
2018.

[11] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The
EPFL Combinational Benchmark Suite,” IWLS, 2015.

[12] C. Wolf, “PicoRV32,”
https://github.com/cliffordwolf/picorv32

[13] Princeton University, “Open Piton Design Benchmark,”
https://github.com/PrincetonUniversity/OPDB

[14] https://github.com/lnis-uofu/LSOracle
[15] J. Cherry, W. Scott OpenSTA https://github.com/lnis-

uofu/LSOracle
[16] https://hub.docker.com/orgs/lnis/
[17] https://launchpad.net/l̃nis-uofu

ACKNOWLEDGEMENTS

This material is based on research sponsored by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7849. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
Air Force Research Laboratory and Defense Advanced Research
Projects Agency or the U.S. Government.


