
interact: An Interactive Design Environment for
Asynchronous Logic

Jiayuan He∗, Wenmian Hua†, Yi-Shan Lu∗, Sepideh Maleki∗, Yihang Yang†,
Keshav Pingali∗, and Rajit Manohar†

∗University of Texas at Austin
{hejy,yishanlu,smaleki,pingali}@cs.utexas.edu

†Yale University
{wenmian.hua,yihang.yang,rajit.manohar}@yale.edu

Abstract—We are developing an open-source EDA flow for
asynchronous logic. We present the current state of the flow,
where all the key components have been integrated into a single
framework including the timer, partitioner, placer, power detailed
router, and global router. We describe enhancements to the flow in
terms of the class of circuits that can be handled, and extensions
to support third-party libraries and flows.

I. INTRODUCTION

Asynchronous logic is an approach to digital design without
using clock signals to orchestrate the computation. This change
presents major challenges to mainstream design automation
tools that are designed with the clocking assumption implicit.

We have been developing an open-source design automa-
tion flow for asynchronous circuits. The flow includes an
open-source hardware description language dubbed “ACT”
(for Asynchronous Circuit Tools/Toolkit), which permits the
specification of asynchronous circuits at multiple levels of ab-
straction ranging from behavioral descriptions at one end and
transistor-level descriptions at the other. The ACT language
supports different asynchronous circuit families and timing
constraints in a single framework.

We previously reported on a number of tools developed
to support asynchronous design, with our philosophy being
that we would only like to develop tools that are specific to
the asynchronous design methodology while re-using existing
synchronous tools where possible. In this work, we report
on a design environment that we have developed over the
past year that integrates all our tools into a single unified
framework. We call this tool interact, as it provides an
interactive command-line interface to the ACT framework.
This tool integrates the following pieces of our flow that are
asynchronous design specific: design management/elaboration,
cell mapping, timing analysis, partitioning, global and detailed
placement, power detailed routing, and global routing.
interact also permits the exchange of information be-

tween different tools, and in particular, between timing anal-
ysis and other physical design steps. We describe how we
achieved this in an academic environment, where different
student research projects tend to be “loosely coupled.”

II. CORE DATA STRUCTURES

The design information is specified in the ACT open-source
hardware description language. The language is available at
http://github.com/asyncvlsi/act/.

ACT maintains design information in a hierarchical fashion,
and provides application programming interfaces (APIs) to
access circuits, components, wires, and cells. We use the
hierarchical ACT data structures as the “master copy” of a
user’s design information.

As our previous place and route tools used LEF/DEF as their
input/output format, we implemented a physical database layer
called PhyDB that represents the “master copy” of physical
geometry information. PhyDB can be viewed as an in-memory
copy of LEF/DEF, and is similar to OpenDB [9] but special-
ized for ACT and supports a more recent LEF/DEF version
needed for advanced technology nodes. PhyDB provides three
types of APIs:

• LEF/DEF file APIs, to populate the database from files
and export it to files.

• Access and update APIs, for physical design tools to pull
input from the database and push output to it without
having to use files.

• Timing APIs, for connecting the timer to other physical
design tools.

The LEF/DEF file APIs are implemented using the Si2
LEF/DEF parser. The access and update APIs are used by
physical design tools including placers and routers. For exam-
ple, the ACT flow is able to add cell libraries, components,
and netlist. Placers can change the cell locations and router
can add wires and vias to nets. Timing APIs report violated
timing constraints and their corresponding slacks computed
from the timer for timing-driven placement and routing.

Information flow between ACT and PhyDB is orchestrated
by the interact tool. After design elaboration, the physical
design problem is constructed from the ACT design and
pushed to PhyDB.

A. Individual components
The key existing tools that we have integrated into

interact are: BiPart, a parallel partitioner [6]; Dali, a grid-
ded cell global and detailed placer [10]; SPRoute, a parallel



global router [3]; PWRoute [4], a power detailed router; and
Cyclone, a static timing analysis engine [5]. To do so, each tool
was converted into a library with API calls that implemented
the functionality of the original executable. These libraries are
all linked with the interact binary. The physical design
tools were already using the open-source LEF/DEF parser
from Si2; hence, it was a straightforward change to modify
them to access the information from PhyDB.

B. Extensibility

The core ACT library was developed with extensibility
in mind. ACT transforms a design internally by executing
a number of “passes,” similar to how a software compiler
executes passes to re-write programs. Examples of such passes
include gate sizing, netlist generation, cell mapping, and
transistor mapping. In addition, we added the capability to
load in passes at run-time via a shared object library, similar
to the mechanism that exists in the LLVM software compiler
infrastructure [1]. To ensure this mechanism is sufficiently
expressive, our timing graph construction pass and LEF/DEF
generation pass were written as external libraries that are
dynamically loaded into interact via run-time commands.

III. NETLIST ADAPTOR

Timing-driven physical design involves the interaction
among timing analysis, placement, routing, gate sizing, and
buffering. How to represent a netlist to fit all tools’ needs
is challenging, as each tool tracks and manipulates different
aspects of a given gate-level netlist. For example, a timer
computes event timing using pin connectivity, liberty files,
and RC trees for nets; a placer positions cell instances while
considering wire lengths of nets; and a router connects pins
by realizing nets through positioning metal segments and vias.

One can force all tools to work on a unified netlist rep-
resentation. However, doing so couples all tools through the
netlist representation, so it will be more difficult to extend
and maintain the tools in the future. Moreover, this hurts the
performance of EDA tools by introducing bad locality of data
fields in a netlist, and by consuming more memory space for
fields not needed.

All gate-level tools require a netlist representation to support
the following functionalities:

• Get the full name for a given object, i.e., a pin, a net, or
a cell instance. This is for file output.

• Get an object given its full name. This is for file input.
• Given a pin, get the net/cell instance that the pin belongs

to. This is to check pin connectivity through nets.
• Given a pin, get its name in its belonging cell instance.

This is to check pin connectivity in a cell instance.
• Given a cell instance, get its cell type name. This is to

check pin connectivity in a cell instance.
• Test if two objects are equal. This can be used to handle

object aliasing.
• Compare two objects. This is useful in breaking ties for

consistent behavior across runs.

All other netlist functionalities are tool-specific, e.g., getting
the timing/position of a pin. Note that the above netlist
behavior does not require a particular netlist representation.

We use a netlist adaptor to capture the required behavior of
netlists. A netlist adaptor is declared as a C++ abstract class
with only pure virtual functions; implemented by interact,
the coordinator of our tools; and then provided to gate-level
tools upon their creation by interact. Individual tools can
use the netlist adaptor at their discretion, for instance:

• Map ACT netlist objects to their internal objects, and vice
versa.

• Facilitate more understandable debug messages.
• Perform file inputs and outputs.

Netlist objects are communicated among tools as void* for
trivial copying, hiding netlist types, and decoupling of tools.

Using our netlist adaptor, a tool can represent a netlist based
on its needs without interfering with other tools. For example,
a placer can represent cell instances as nodes and nets as
edges, while a timer can represent pins as nodes and timing
arcs/net legs as edges. Furthermore, all gate-level tools can
work with any netlist representation by replacing the netlist
adaptor being provided. This greatly enhances the modularity
of tools. Finally, full names for netlist objects are always
consistent across tools, as they are centrally managed by a
netlist adaptor.

Our design of netlist adaptors is an example of dependency
inversion principle in software engineering. Without a netlist
adaptor, gate-level tools depend on a given netlist represen-
tation. After introducing a netlist adaptor, however, a netlist
representation now implements an abstract netlist adaptor,
while all gate-level tools just use a netlist adaptor instance.

IV. TIMER APIS

Since individual tools can have their own netlist represen-
tation, communication among tools is achieved through API
calls mediated by interact. Any design optimizer relies
on slack to know where to focus, and uses paths with delay
annotated to decide what to do. Therefore, a timer should be
able to provide slack at pins, and paths related to the slack
value. Our Cyclone timer provides correctness slack from
timing constraints, and performance slack from the critical
cycle [5]. Since a pin may be involved in multiple timing
constraints, a way to iterate over timing constraints should be
provided by a timer.

A timer should be able to update timing incrementally by
taking the manipulation results from circuit optimizers. For
gate sizing and buffering, this is the change of netlists; for
placement and routing, this is the change of RC trees for nets.
Therefore, a timer should allow tools to propagate updates in
netlist topology, attributes of netlist objects, and RC trees.

To support timing-driven design optimization, the PhyDB
library has a set of callback functions that can be used by
any of the back-end tools to issue timer queries. interact
provides implementations of the callback functions that can
issue the appropriate timer queries, whose results can be
interpreted by the back-end tools using internal maps between



Design

Expanded 
design

Technology 
mapping

Missing cell 
generation

Characterizer

Timing graph 
creation

LEF/DEF 
export

Verilog export

SPICE export
Dali: gridded 

cell placer

SPRoute: 
global routing

BiPart:
Floorplan

Layout 
finishing

stdcell detailed 
placement

Detailed
routing

C
yc

lo
ne

: A
sy

nc
hr

on
ou

s 
ST

A

Parallel data 
structures,

runtime

Third 
party 
tools

Reporting
AC

T:
 u

se
r d

es
ig

n
AC

T:
 c

el
l m

ap
pi

ng

ACT: exports

SPEF

Ph
yD

B:
 p

hy
si

ca
l d

at
ab

as
e

PWRoute: 
power routing

Dali: global 
placer

standard cell flowgridded cell flow

Fig. 1: interact components and interactions.

tool-specific netlist information (e.g., a PhyDB net) and the
“master” ACT netlist information.

V. SUPPORTING THIRD-PARTY FLOWS

The design flow is specified via scripts in the interact
tool. Hence, it is possible to customize the flow to support
designs that were either hand-generated or generated through
third party tools. We describe how this is supported in the
current version of interact.

We assume that third-party designs are provided in a Verilog
netlist. The ACT tools come with a program that can automat-
ically convert a Verilog netlist into ACT syntax. Hence, it is
this converted ACT file that serves as the entry point to our
flow. This import also requires blackbox ACT declarations for
all the cells in the standard cell library used by the original
Verilog netlist.

The design can be read into interact via the automat-
ically generated ACT netlist file. For static timing analysis,
asynchronous circuits need additional information to correctly
analyze cycles in the timing graph [5]. We have augmented
interact to include commands to specify this information
directly, as it will be missing from a plain Verilog netlist.
interact also has commands to augment the set of timing
constraints needed for correct operation. If required, these
must also be specified via scripts because the Verilog netlist
will not include them. Note that in a design that used ACT for
design entry (prior to netlist generation), this information can
be computed or specified in ACT, and is part of the timing
graph generation algorithms [5].

To start the physical design, an external LEF must be
provided for all the cells and technology design rules. The DEF
is auto-generated from the ACT netlist, and the Dali global
placer can be used. Dali also includes a gridded cell detailed
placer. For standard cell placement, we support running an
external standard cell detailed placer. Finally, we can run our
global router and export LEF/DEF and guide files to run an
open-source detailed router. Figure 1 provides an overview of
our current flow. For shorter turn-around time, tools colored
in orange are parallelized using the Galois framework, a C++

library for parallel graph computing [7] based on the operator
formulation of algorithms [8]. Galois is available at [2].

VI. CURRENT STATUS

We have used the current version of the flow to successfully
re-implement a 65nm asynchronous microprocessor that we
had previously taped out. Instead of using a collection of
tools and scripts, all the ACT tools were executed directly
via a single interact script prior to hand-off to com-
mercial tools for detailed routing. interact is available
at http://github.com/asyncvlsi/interact, and
the components implemented as libraries are available at
http://github.com/asyncvlsi/.

VII. SUMMARY

We have described recent progress toward the creation of
an open-source design flow for asynchronous logic. The main
step in the past year has been to integrate all our core EDA
tools into the interact interactive design environment.
The flexibilty afforted by this integration means that we can
support not just our ACT-specific flow, but also support third-
party inputs using Verilog netlists, LEF, and scripts to specify
additional timing constraints.

A true timing-driven flow is currently being implemented,
and we hope to complete the first version of this flow by the
end of this year.

REFERENCES

[1] https://llvm.org/.
[2] Galois: C++ library for multi-

core and multi-node parallelization.
https://github.com/IntelligentSoftwareSystems/Galois.

[3] J. He, M. Burtscher, R. Manohar, and K. Pingali. Sproute:
A scalable parallel negotiation-based global router. In
International Conference on Computer-Aided Design,
Nov. 2019.

[4] J. He, Y. Yang, and R. Manohar. A power router for
gridded cell placement. In Workshop on Open-Source
EDA Technology, International Conference on Computer-
Aided Design (ICCAD), Nov 2020.



[5] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar. Cyclone:
A static timing and power engine for asynchronous
circuits. In International Symposium on Asynchronous
Circuits and Systems (ASYNC), May 2020.

[6] S. Maleki, U. Agarwal, M. Burtscher, and K. Pingali. Bi-
part: A parallel and deterministic hypergraph partitioner.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’21, page 161–174, New York, NY, USA, 2021.
Association for Computing Machinery.

[7] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 456–471, New York, NY,
USA, 2013. ACM.

[8] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of
parallelism in algorithms. In PLDI 2011, pages 12–25,
2011.

[9] T. Spyrou. Opendb, openroad’s database. In Workshop
on Open-Source EDA Technology (WOSET), 2019.

[10] Y. Yang, J. He, and R. Manohar. Dali: A gridded
cell placement flow. In International Conference on
Computer-Aided Design (ICCAD), Nov 2020.


