

Towards Fast and Accurate Parallel Chip Thermal Simulations with PACT

BY ZIHAO YUAN¹, PRACHI SHUKLA¹, SOFIANE CHETOUI², CARLTON KNOX¹, SEAN NEMTZOW¹, SHERIEF REDA² AND AYSE K. COSKUN¹

¹Boston University; ²Brown University

Workshop on Open-Source EDA Technology (WOSET) October 6, 2021

Introduction and Motivation

- Challenges in existing compact thermal simulators
 - Target architecture-level thermal simulations
 - HotSpot [K. Skadron et al., ISCA'10]
 - 3D-ICE [A. Sridhar et al., ICCAD'10]
 - Cannot tackle large and complex problems
 - Standard-cell designs
 - Monolithic 3D simulations
 - Hard to extend emerging integration and cooling technologies
 - New models for cooling methods frequently roll out customized software package

Introduction of PACT

- Fast and accurate parallel thermal simulator (<u>https://github.com/peaclab/PACT</u>)
 - Supports both standard-cell level and architecture-level parallel thermal simulations
 - Enables (i) evaluating full real-world chips, (ii) fine-grained evaluations, and (iii) transient evaluations with realistic power profiles over longer time frames
 - Has high extensibility for emerging cooling solutions and technologies
 - Supports thermal evaluations of full industrial standard-cell designs from OpenROAD
 - Supports for various steady-state and transient solvers to speed up simulation time while maintaining the desired accuracy level
 - Integrates a transient thermal video generation tool, VisualPACT
- Validation against COMSOL
 - Max steady-state error: 2.77%
 - Max transient error: 3.28%

Overview of PACT

PACT Simulation Flow

Extensibility of PACT

OpenROAD Interface and PACT Solvers

VisualPACT

4

PACT Simulation Flow

User inputs

- Chip stack descriptions (e.g., floorplan, # of layers, power traces)
- # of grids and heat sink type
- Material properties and cooling method

Calculate netlist components

- Calculate thermal R, C, and I
- Calculate package thermal R and C
- Calculate thermal R, C, and I for TSV and cooling methods _____

Thermal netlist generator

• Other simulation options (e.g., time period, step size)

Extensibility of PACT

[Z. Yuan et al., TCAD'21]

OpenROAD Interface and PACT Solvers

OpenROAD Interface

PACT Solvers

- Direct solver vs. Iterative solver
- Numerical instability issue with forward Euler method (Monolithic 3D transient simulation)
- Simulation speed and accuracy tradeoff

VisualPACT

- PACT is compatible with architectural performance and power simulator
 - Sniper + McPAT + PACT
- VisualPACT
 - Generating thermal videos for transient thermal simulations
 - Visualizing transient thermal behaviors of architectural simulations
 - Sniper+McPAT+PACT+VisualPACT

VisualPACT Video (Intel i7 6950X)

Validation with OpenROAD Benchmarks

Steady-State (Max Error: 2.77%)

Transient (Max Error: 3.28%)

10/15/2021

[Z. Yuan et al., TCAD'21]

Speed Analysis with OpenROAD Benchmarks

PEACLAB

PACT

- Fast and accurate parallel thermal simulator
- Architecture level & standard-cell level
- High extensibility for emerging cooling methods
- Various numerical solvers
- OpenROAD interface
- VisualPACT

User inputs

- Chip stack descriptions (e.g., floorplan, # of layers, power traces)
- # of grids and heat sink type
- Material properties and cooling method

Calculate netlist components

- Calculate thermal R, C, and I
- Calculate package thermal R and C
- Calculate thermal R, C, and I for TSV and cooling methods

Thermal netlist generator

- Steady-State simulation (e.g., KLU, KSparse)
- Transient simulation (e.g., Backward Euler, Trapezoidal)
- Other simulation option (e.g., time period, step size)

Concluding Remarks

More info at https://github.com/peaclab/PACT Please send feedback to yuan1z@bu.edu