
FABulous: an Open-Everything Framework for
Embedded FPGAs

Bea Healy, Jing Yu, Nguyen Dao, King Lok Chung, Dirk Koch
Department of Computer Science, The University of Manchester, UK

{jing.yu, nguyen.dao, dirk.koch}@manchester.ac.uk, {tabitha.healy, king.chung@student.manchester.ac.uk}

Abstract—This paper presents the open-source embedded
FPGA framework FABulous that is designed for ease-of-use and
excellent quality of results in terms of logic density, performance,
and power consumption. FABulous users can build a fabric from
predefined tiles for logic, memory, arithmetic, and various IO.
The tiles are stitched together in a Lego-like manner, as needed.
Users can add custom tiles or customize the routing resources
and most architectural details of the FPGA fabrics. Experienced
designers can provide optimized cells for configuration storage or
switching (e.g., pass transistor multiplexers, what we currently
provide for TSMC 180nm and Skywater 130nm). Alternatively,
FABulous can fall back to a standard cell design, which makes
FABulous FPGAs easily portable across different technology
nodes. Fabulous comes with unique features that are not avail-
able in other open-source FPGA frameworks like low power
frame-wise reconfiguration and dynamic partial configuration.
FABulous integrates several other open-source projects (Yosys,
nextpnr, VPR, OpenLane, Verilator) to provide a full and open
end-to-end user experience.

Index Terms—FPGA, reconfigurable computing, embedded
FPGAs

I. INTRODUCTION

FPGAs are ideal to update chips in the field for enabling
hardware maintenance, customization, and even after-sales
business. Moreover, FPGA technology is superior in translat-
ing an increment in logic density on a chip into corresponding
performance. Furthermore, for programmable devices, FPGAs
deliver better performance-per-Watt than what can be achieved
by CPUs or GPUs.

However, the reconfigurability of FPGAs comes at a sub-
stantial cost for making logic functions and connections pro-
grammable, and especially in smaller designs, the cost for
FPGA hardware programming should only be spent where it is
most beneficial. This is the domain where embedded FPGAs
(eFPGAs) came into play by integrating a reconfigurable
fabric exactly tailored to the needs of the system, while
having hardened parts that do not require reconfiguration (e.g.,
components like memory controllers or a CPU). To support
this in an entire open ecosystem, this paper is presenting the
FABulous eFPGA framework that provides:

• An easy way to specify an eFPGA fabric.
• An emulation path for testing entire systems (SoC +

eFPGA fabric) on commercial FPGA boards.
• A full ASIC backend flow to implement eFPGAs. This

includes both commercial EDA tools (Synopsys Design
Compiler and Cadence Innovus) and open-source EDA
tools (Yosys and OpenLane).

LUT

LUT

LUT

LUT

DSP_bot

DSP_top

DSP

DSP_bot

DSP_top

DSP LUT

LUT

LUT

LUT

CPU
IO

CPU
IO

CPU
IO

CPU
IO

REG
(mem)

REG
(mem)

REG
(mem)

REG
(mem)

IO
Pin

IO
Pin

IO
Pin

IO
Pin

term term term

term term term term

term Tiles
4x IO pins
4x Register file
 slice
2x DSP block
8x CLB tiles
 (LUTs
4x Internal
 CPU IO port

+termination
tiles at the
north & south
borders.

Fig. 1: Top: example eFPGA. Bottom: spreadsheet model.

• An integration with open-source FPGA CAD tools,
including Yosys [1] / nextpnr [2] and VPR [3].

Embedding an FPGA into an ASIC is difficult and imposes
a risk to meet all cost, capacity and performance objectives.
The goal of FABulous is to minimize this risk by automating
processes as much as possible and by absorbing most low-
level details by our framework. However, FABulous allows to
customize the FPGA fabrics at any level, as needed.

Figure 1 provides a motivating example. It shows a small
fabric and the corresponding spreadsheet specification from
which FABulous can generate an eFPGA fabric. This view tar-
gets users that have some background in FPGAs and that may
have used devices from major FPGA vendors (e.g., Xilinx,
Intel, or Lattice) before. In this mode, we provide predefined
tiles that are currently a mixture of a Spartan-3-like routing
fabric and Lattice iCE40 logic tiles. We decided for this
because the Spartan-3 family provides a sophisticated routing
fabric but has all patents expired and iCE40 is a popular
architecture supported by the major open-source CAD tools
(Yosys/nextpnr and VPR). From the original Spartan-3 routing
fabric we removed long lines, multiple clock domains, and we
used at some points a more hierarchical FPGA architecture
graph to save on area.

Initially, FABulous had been presented in [4] and [5]. This

Se
Nb

Ne
Sb

WeEb

Po

Ee

Pi

Jump

switch
matrix

prim
itive

Ec

Wc

Nc Sc

Wb

St
Nt

EtWt

LUT
tile

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

 direct
inter
tile

links

DSP
top

DSP
bot

a) basic tile

b) composed tile

Fig. 2: a) Basic tile consisting of a switch matrix, wires
to neighboring tiles, and one or more connected primitives.
b) Composed tile taking the size of two basic tiles.

paper is focusing on the open-source integration and usage of
FABulous. Novel contributions include a better integration into
VPR, an improved FPGA fabric architecture, better support for
tiles of different size, support for the open Skywater 130nm
PDK, support for the OpenLane ASIC tools, and a Docker
container with the framework for ease-of-use.

II. SPECIFYING AN EFPGA IN FABULOUS

The specification in Figure 1 uses descriptors to tiles. While
FABulous could use this to generate the required ASIC RTL
code, a simulation model, and the model files for Yosys,
nextpnr, and VPR, this section will provide further details on
how to specify custom fabrics.

A. Tile-based Fabric Definitions

Figure 2a) shows a FABulous tile with its central switch
matrix, wires, and one or more primitives that are connected to
the switch matrix. The primitives could be just look-up tables
(LUTs) or somehow more complex blocks like the slices in
Xilinx (where multiple LUTs share some clock and multiplex-
ing infrastructure). There are no restrictions to the logic tiles
and any simple LUT model (like Lattice FPGAs), composable
LUTs (like Xilinx Spartan-3/Virtex-II), and fracturable LUTs
(like all modern Xilinx and Intel FPGAs) are supported. To
this end, FABulous relies heavily on the abilities of Yosys to
make use of the different tile types. Luckily, Yosys is well
maintained and steadily growing and it is becoming the GCC
frontend equivalent for open-source (FPGA) CAD tool flows.

VPR models are strongly influenced by Altrera FPGA
fabrics where a tile uses different cascaded switch matrices.
In these fabrics, a first level switch matrix is picking which
signals from the routing channels will go into a switch matrix;
and from there, a signal may eventually be routed through
another second level switch matrix to another tile or a primitive
input. Xilinx FPGAs traditionally used a direct approach where
the channel wires are directly connected to the switch matrix

Fig. 3: Example of a tile description.

and where it is possible to reach a primitive input through a
single switch matrix multiplexer level.

For FABulous, we decided for a simple, but yet flexible
way to model virtually any routing and switching fabric. We
connect all wires that end at a specific tile to the corresponding
central switch matrix. If a user wants to build an Altera-
style hierarchical routing fabric, this is modeled with the help
of jump wires (i.e. wires that begin and end at the same
switch matrix). Users can specify arbitrarily jump wires for
modeling any hierarchy. Jump wires are also needed to model
latest UltraScale FPGA fabrics from Xilinx. In original Xilinx
FPGAs, multiplexers had been implemented in multiple levels
of passtransisitor multiplexers (two levels in Virtex II and
three levels in Spartan-3 FPGAs [6]). While UltraScale devices
share many similarities with classic Xilinx FPGA fabrics, the
two-level monolithic multiplexers are now exposed to the users
as two separate levels of multiplexers in UltraScale fabrics.

It is common practice to organize FPGAs in columns of
identical resource type (see Figure 1). All tiles will share
the same physical height, but the width is adjusted to the
individual resource requirements (e.g., a DSP column maybe
wider than a LUT logic column). This scheme results in a
tight packing even if different resource types are used.

Some tiles will require more resources than what would
fit sensibly into a basic tile and/or may need more wire
connections to the routing fabric. For this, we can combine
multiple adjacent tiles to a composed tile as shown for a
DSP example in Figure 2b). In a composed tile, we typically
specify one tile to contain all the primitives while using
the other tiles to provide extra connectivity to the otherwise
homogeneous routing fabric. This means that the tile-to-tile
routing fabric is commonly the same regardless of the the
particular resource type (except for some exceptions like carry
chains etc.). This is fundamentally the same scheme as used
in Xilinx FPGAs. Note that this is a logical view, and the
physical implementation will use the area of all the basic tiles
to implement the composed tile. The functionality (like the
DSP module in our example) is simply provided as RTL code
(Verilog or VHDL) and connected to a switch matrix (a DSP
ALU connected to the bottom switch matrix in the example).

Fig. 4: Switch matrix adjacency can arbitrarily be defined in
matrix form (left) or in list form (right).

B. Modeling Routing Fabrics in FABulous

While FPGA users look at their FPGA in terms of the
resources available, it is the routing fabric that is mostly
defining the area, speed, and power characteristics of an
FPGA. The multiplexers with their configuration storage take
about 80-90% of the die area and the routing wires contribute
most to the overall congestion (use of metalization layers) [7].

Figure 3 provides an illustrative example of the tile de-
scription of a configurable logic block (CLB). The description
defines three sections: 1) the wires (given by their direction,
names for begin and end ports, and the offset to which the
wire routes), 2) the primitives or basic elements – BELs (that
will be connected to the switch matrix, and 3) an optional
switch matrix. We can adjust the direction, amount, and length
of wires by editing the wire entries of the tile descriptions.
For instance, smaller fabrics do normally not require long
distance wires as those are more suited for inter module
routing. Branching and diagonal wires can be modeled by
concatenating multiple wires segments together.

While users can customize the routing fabric, the wires on
horizontal direction should match across the different tile types
and all tile types must have a corresponding number of wires
that directly match for stitching together a fabric.

All switching is done in the central switch matrix. The
adjacency is defined either by a matrix description or a list
(see Figure 4), and FABulous can translate arbitrarily between
both. When custom switch matrix multiplexers are available,
FABulous will use them in the physical fabric implementation.
In our present examples, using custom multiplexers can reduce
implementation cost by 30%. Here it is not required to provide
all used multiplexer variants. For instance in our test chips, we
provided a custom 4:1 multiplexer, and FABulous uses that cell
to build other (larger) multiplexers.

Defining a good routing fabric in terms of wires and
adjacency that allows routing of highly utilized fabrics without
overprovisioning routing resources is hard and normally needs
expert knowledge. While FABulous would allow exploring this
design space, our recommended approach is to use a default
fabric and then remove features that are not needed. This
is straightforward to use: we can start from a full fledged
FPGA fabric, implement our target or some benchmark circuits
on that fabric and check the statistics if some resources are
underutilized to be removed. This does not require the physical
FPGA fabric but just yosys/nextpnr or VPR. We then remove
those resources and reimplement the circuits to confirm that
they can be implemented on the down-stripped fabric.

Fig. 5: The FABulous Framework.

III. THE FABULOUS FRAMEWORK

Figure 5 shows the entire FABulous framework. It integrates
tools for the ASIC syntheses flow (left), the eFPGA CAD flow
for implementing Verilog to bitstream (right), and paths for
simulation (using Verilator [8] and emulation (using Xilinx
vendor tools). The FPGA CAD flow is based on Symbi-
Flow [9], which aims at providing a GCC equivalent for FPGA
compilation. A distinct feature of FABulous is that it can
generate models for both Yosys/nextpnr and VPR. For any
task there is at least one open-source option available. More
details on the framework and the tool interplay is in [4].

IV. CHIP GALLERY

Figure 6 shows chips that had been built with FABulous:
chip process area1 LUTs DSPs REG Mem

a) caravel sky Sky 130nm 10mm2 864 6 12 6x1Kb2

b) RISCV sky3 Sky 130nm 8.7mm2 320 10 – –
c) STRIVE sky Sky 130nm 15.5mm2 1440 – 45 –
d) RISCV TSMC4 TSMC 180 3.4mm2 384 4 8 –
1 core area of the eFPGA.
2 dual-ported with conf. read and write aspect ratios, built by OpenRAM [10].
3 Dual RISC V system using a shared eFPGA through custom instructions.
4 RISC V with eFPGA for custom instruction extension. Up to three partially
reconf. instructions; can be used standalone (via dedicated I/O tiles) [5].

The chip gallery shows different ways to integrate IP into
the FPGA fabric and expresses the versatility of FABulous:
1) by embedding tiles into the fabric (e.g., custom DSPs), 2)
by attaching the fabric to external IP, such as a RISC-V core
or my attaching external IP to the fabric (the BRAMs in a),
which appear logically inside the fabric, but that are actually
located at the border of the fabric).

V. RELATED WORK

Commercial eFPGA vendors (e.g., QuickLogic, Flex Logix,
Menta, Achronix, NanoExplore, and Efinix [11]–[16]) differ-
entiate in target applications, technology, and usability. For
instance, Menta is portable to any process as it is entirely
based on a standard cell design and flip-flops for configuration
storage. Fabulous is similar to that, but will deliver better
quality of results when using custom multiplexers and cheaper
latches for configuration storage. Industry solutions often lag
in customizing primitives, the routing, interfaces to the outside
world, and the exact size of the fabric. While standardized

(a) eFPGA_caravel_sky130 (b) eFPGA_RISCV_sky130 (c) eFPGA_STRIVE_sky130 (d) eFPGA_RISCV_TSMC180
(384xLUTs, 6xDSPs, 12xRegFiles
6x1Kb BBRAMs with custom cells)

2xRISC-V with eFPGA
(320xLUTs, 10xDSPs)

standard eFPGA
(1440xLUTs, 45xRegFiles)

standard eFPGA with RISC-V core

Fig. 6: Fabulous chip gallery.

eFPGAs are a way to reduce complexity and risk, FABulous
is not omitting domain-specific customizations.

The open-source FPGA approach in [17], used VTR [18]
for building custom FPGAs targeting standard cell technology.
This work was extended in [19] with support for heteroge-
neous FPGA fabrics that support BRAMs and DSPs. FAB-
ulous produces better quality results by using frame-based
reconfiguration for large fabrics. However, the DSP blocks
in [19] are more sophisticated than what we are currently
providing in FABulous but we could use those by providing
a different model and without changes to FABulous itself.
Other related flows include [20]–[23]. Compared to all these
approaches FABulous is the only framework integrating both
Yosys/nextpnr and VPR as well as supporting partial reconfig-
uration (PR). Some related approaches claim to support PR,
but that is not working with shift register configuration.

Like FABulous, Open-FPGA [24] is one of the few
approaches considering both the fabric generation and the
FPGA CAD tool-chain for the eFPGA bitstream generation.
OpenFPGA supports scan-chain reconfiguration [24] only,
while FABulous supports scan-chain and frame-based
reconfiguration (and therefore PR). Most importantly, frame-
based reconfiguration allows storing configuration data in
cheap SRAM cells or latches, while OpenFPGA requires
more expensive D-flip-flops and will require more power
for configuration. Therefore, FABulous will deliver a better
quality of results at the same optimization effort. For
direct comparison, OpenFPGA and FABulous have a MPW
Skywater 130 tapeout and the CLBs compare as follows:

area resources
OpenFPGA 217x250 = 54250um2 1300 MUX2, 530 DFF
FABulous 210x220 = 46200um2 376MUX4/46MUX2/8FF/586Latch
Therefore, FABulous needs only 85% for a CLB of roughly
similar complexity (1xMUX4 is about 3xMUX2).

VI. CONCLUSION

This paper provides a brief intro into the capabilities and us-
age of the FABulous eFPGA framework. FABulous is designed
to serve a wide range of users, from system integrators (by
using default templates) to FPGA architects (who have detailed
control over the entire flow). Tapeouts have demonstated the
applicability of FABulous, and the quality of results can well
compete with commercial and academic eFPGA offerings.

FABulous is currently the most versatile framework with
respect to modeling capabilities and the flows supported.

The framework is integrating many other high-quality open-
source projects, including Yosys [1], nextpnr [2], VPR [3],
OpenRAM [10], and the Verilator [8]. To empower the open-
source community to make widespread use of reconfigurable
computing, we are actively maintaining this project. The
project is released under Apache 2.0 license and all sources
and a docker container is available under:
https://github.com/FPGA-Research-Manchester/

ACKNOWLEDGMENT

This work is kindly supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) grant
EP/R024642/1 under project FORTE (http://www.forte.ac.uk/).

REFERENCES

[1] C. Wolf, “Yosys Open SYnthesis Suite,” http://www.clifford.at/yosys/.
[2] D. Shah and et al., “Yosys+nextpnr: An Open Source Framework from

Verilog to Bitstream for Commercial FPGAs,” in 27th FCCM, 2019.
[3] V. Betz and J. Rose, “VPR: a New Packing, Placement and Routing

Tool for FPGA Research,” in FPL, 1997, pp. 213–222.
[4] D. Koch, N. Dao, B. Healy, J. Yu, and A. Attwood, “FABulous: An

Embedded FPGA Framework,” ser. ACM FPGA, 2021, p. 45–56.
[5] N. Dao, A. Attwood, B. Healy, and D. Koch, “FlexBex: A RISC-V with

a Reconfigurable Instruction Extension,” in FPT, 2020.
[6] C. Beckhoff, D. Koch, and J. Torresen, “Short-Circuits on FPGAs

Caused by Partial Runtime Reconfiguration,” in 20th FPL, 2010.
[7] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for

Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.
[8] Wilson Snyder, Verilator. Online: https://www.veripool.org/verilator/.
[9] C. Wolf, et al., “SymbiFlow Open source flow for generating bitstreams

from Verilog,” https://github.com/SymbiFlow/.
[10] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,

“OpenRAM: An Open-Source Memory Compiler,” in ICCAD, 2016.
[11] Online: https://www.quicklogic.com/products/efpga/efpga-technology/.
[12] Flex Logix eFPGAs. Online: https://flex-logix.com/efpga/.
[13] Menta eFPGA Website. Online: https://www.menta-efpga.com/.
[14] Achronix. Online: https://www.achronix.com/product/speedcore.
[15] NanoExplore Website. Online: https://www.nanoxplore.com/.
[16] Efinix Inc. . Online: https://www.efinixinc.com/products-trion.html.
[17] Jin Hee Kim and J. H. Anderson, “Synthesizable FPGA Fabrics Tar-

getable by the Verilog-to-Routing (VTR) CAD flow,” in 25th FPL, 2015.
[18] J. Luu and et al., “VTR 7.0: Next Generation Architecture and CAD

System for FPGAs,” ACM TRETS, vol. 7, no. 2, Jul. 2014.
[19] B. Grady, et al., “Synthesizable Heterogeneous FPGA Fabrics,” FPT’18.
[20] P. Mohan and et al., “A Top-Down Design Methodology for Synthesiz-

ing FPGA Fabrics Using Standard ASIC Flow,” in 28th FPGA, 2020.
[21] H. J. Liu, “Archipelago - An Open Source FPGA with Toolflow

Support,” Master’s thesis, University of California at Berkeley, 2014.
[22] Princeton University, “Princeton Reconfigurable Gate Array,” 2019,

https://prga.readthedocs.io/en/latest/.
[23] A. Li and D. Wentzlaff, “PRGA: An Open-source Framework for

Building and Using Custom FPGAs,” in 1st OSDA, 2019.
[24] X. Tang and et al., “OpenFPGA: An Open-Source Framework for Agile

Prototyping Customizable FPGAs,” IEEE Micro, vol. 40, no. 4, 2020.

