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Abstract—We present LiveHD, a parallel HDL
compiler to boost the HDL compilation throughput.
The hierarchical dependency of the design is resolved
internally in LiveHD without any pre-scan step on
source files. We identify why and how LiveHD pass is
compiled with full parallelism or a bottom-up scheme
by referencing the design dependency relation. Our
results show that when compiling the highest level of
FIRRTL language, CHIRRTL, LiveHD is 1.7x faster
than the FIRRTL compiler with single-threaded; and
3.1 to 5.48X faster when exploiting 2-5 threads.

I. INTRODUCTION

Modern HDLs like Chisel3/FIRRTL [1], [2],
PyRTL [3], and Pyrope [4] have attracted extensive
interest because their higher level of expressiveness
eases the difficulty of depicting hardware.

However, when programming in modern HDLs,
the compilation throughput becomes a critical crite-
rion. Conventionally, HDL compilation is classified
as the elaboration phase in EDA flows. When the
input language is Verilog, the elaboration time takes
only a tiny portion compared to the logical and
physical synthesis flow [5]. Notwithstanding, it is
not the case in modern HDLs where a deep compiler
stack is needed to handle the complex semantics,
leading to a low compilation throughput.

Modern SoC usually contains thousands of mod-
ule instantiations. Designing a parallel and scalable
HDL compiler is the key to increase compilation
throughput. However, heretofore, there is no HDL
compiler designed to focus on high parallelization
and scalability.

This paper proposes a new concept-proof frame-
work, LiveHD, as the first HDL compiler that
achieves high thread scalability. We chose FIRRTL
as the target HDL to evaluate how LiveHD ad-
dresses the issue of low compilation throughput.

HDLs lack the #include directive and preproces-
sor mechanism as in C/C++. Therefore, resolving
both dependency relations and interfaces of the de-
sign hierarchy is a challenge for HDL parallel com-

pilation. In the LiveHD, no extra pre-compilation
scan step is needed. The design relations are dy-
namically resolved by constructing a dependency
tree during the internal IR generation phase.

Dependency tree guides LiveHD to apply paral-
lelism. For the passes where the caller and callee are
independent, LiveHD can compile them parallelly
in any order; this is usually called embarrassingly
parallel [6], or full parallelism in this paper. For
the passes that are not full parallelism, LiveHD ref-
erences the dependency tree to select independent
modules and compile them parallelly. The selection
starts from the dependency tree leaves; A parent
module can only be a candidate after all its children
have been processed. We define this approach as
bottom-up parallelism. One of the major effort in
LiveHD is to make as many full-parallelized passes
as possible.

Our results show that when compiling the highest
level of FIRRTL language, CHIRRTL, LiveHD is
1.7x faster than the FIRRTL compiler in the single-
threaded compilation; and 3.1-5.48X faster when
exploiting 2-5 threads.

II. RELATED HDL COMPILERS AND IRS

Recently, HDL compilation and hardware IR
designs [2], [7]–[10], [10]–[19] have been a re-
search hotspot for both HLS and RTL abstrac-
tions. Nonetheless, most of these works do not
apply parallelized compilation, and the compilation
throughput is always not the priority.

a) Scala-FIRRTL: FIRRTL is an IR used in-
ternally in the Chisel3 [1]. The first FIRRTL com-
piler is implemented in Scala [20] (Scala-FIRRTL).
As shown in Figure 1, a front-end Chisel3 compiler
produces CHIRRTL as the input for the Scala-
FIRRTL compiler. The Scala-FIRRTL compiler is
not designed for compiling languages other than
Chisel3/FIRRTL. Moreover, due to the AST-centric
and non-SSA representation of FIRRTL, it is not
easy to find use-def chains for a variable. Multiple



tree iterations must be performed in order to build
the data structures for AST transformations. The
long tree traversal time together with sequential
compilation in Scala-FIRRTL is a problem for large
digital designs.

b) Circt-FIRRTL: Circt [9] is a new experi-
mental hardware IR extended from MLIR [21] and
LLVM [22] communities. Circt framework shares
the same ideas as LiveHD, i.e., to be the unified
hardware development center. Theoretically, it is
possible to compile multiple languages through in-
terfacing various front-end MLIR dialects design in
Circt. Right now, the Circt-FIRRTL flow (Figure 1)
is being actively developed , and only the FIRRTL
input is supported.
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Fig. 1. Overview of LiveHD compilation flow and comparisons
between Chisel3/FIRRTL compiler.

III. HIGH-LEVEL OVERVIEW OF LIVEHD
In LiveHD, we focus on handling the RTL

abstraction. Figure 1 demonstrates the high-level
overview of LiveHD. It uses two levels of IRs,
a tree-like language-neutral AST, LNAST [23],
and a hierarchical graph, LGraph [24]. LiveHD
currently compiles three HDLs: FIRRTL, Pyrope,
and Verilog. Source codes are first translated into
language-specific parse trees and then transformed
to LNAST IR for executing the SSA transformation.
The LNAST IR will be lowered into LGraph IR. In
LGraph, most of the LiveHD compilation passes are
executed to generate the optimized Verilog output.

IV. PARALLEL COMPILATION

A. Functional independence w.r.t Parallelism
Functional independence is the key factor to

evaluate the parallel ability of an HDL compilation
pass. Modules are functionally independent when
the pass executions of the modules do not interfere
with one another. In most HDLs, a callee’s inputs
and attributes are usually self-defined and do not
depend on the caller’s information. That means as
long as processing the caller does not rely on the

outputs of its callees, the independence property is
still valid for a caller-callees pair.

A pass is fully parallelizable when all the mod-
ules are functional independent; The pass can op-
erate all modules parallelly in any order. Higher
parallel scalability could be achieved as long as
the compiler puts more threads resources. Yet, not
all passes could achieve this optimal parallelism.
Caller-callee modules functionally dependent in a
pass have to follow a dependency order and cannot
be compiled parallelly. The compiler has to explore
the dependency relations and select independent
modules to process parallelly to extract further
parallelization levels from this kind of passes.

B. Dependency Tree Design

In HDLs, the hierarchy of all module instantia-
tions can always be represented as a dependency
tree structure (Figure 2-a, 2 b). In LGraph, a sub-
module instance is represented as a node with a
sub-graph type. The sub-graph could point to the
other graph. LiveHD employs a depth-first search
(DFS) algorithm from the specified top module to
recursively traverse into the sub-graph nodes and
build the dependency tree. The sub-graph nodes
have been recorded previously during LGraph con-
struction. The DFS algorithm could just visit these
sub-graph nodes without traversing all nodes in an
LGraph.

In the dependency tree, the leaf module instances
must be functionally independent of each other
because they have no direct IO connections. Thus,
LiveHD could exploit the bottom-up-parallelization
mechanism for a non-fully-parallelizable pass: start
parallelizing the tree leaves, and then create a new
thread job for the parent module once all of its
children have been processed.

A module may have multiple instantiations in
an HDL program. In LiveHD, the instantiations
of the same module are represented as the same
LGraph, but they are viewed as different nodes in
the dependency tree. LiveHD excludes the redun-
dant compilation on module instances by avoiding
them entering the internal thread pool.

When accessing global objects, handing over the
mutex lock ownership between threads is costly in
parallel programming. The execution flow will be
bottlenecked sequentially by the critical sections of
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Fig. 2. The LiveHD parallel compilation example with a hierarchical FIRRTL front-end. Module-1 has multiple instances but only
gets compiled once. Module-3 has much more lines of code than others. The vertical dotted lines are the synchronization barriers.

each thread. Nonetheless, using LGraph IR mini-
mizes such overhead in LiveHD. LGraph IR main-
tains a graph library to manage basic information
like the graph name, graph IOs, and the dependency
tree for all LGraphs. This library is the only global
object that needs lock protection. Whenever there is
a request to create a new LGraph, the graph library
will atomically generate a new graph skeleton. The
skeleton generation is just a minor C++ constructor
procedure and could be neglected compared to an
entire compiler pass.

C. Parallelism of Compilation Passes

1) Fully parallelized LNAST construction:
If an HDL source file has multiple modules
defined, LiveHD will spawn new threads of
Source to LNAST to handle each of the modules.
Since Source to LNAST function merely maps the
parse tree of a module into the corresponding
LNAST, there is no dependency between the ex-
ecutions of the threads. Thus Source to LNAST is
a fully parallelizable pass.

Whenever a new LNAST is constructed, LiveHD
will immediately spawn an LNAST SSA thread task
to translate this LNAST into SSA form. Even
though there might be sub-module instantiation
statements in the LNASTs, since SSA transforma-
tion only focuses on the sub-modules return value
and inputs arguments, the internal content of the
sub-module does not affect the parent module’s
SSA. Therefore, modules in the dependency tree
are independent as regards LNAST SSA and can be
handled full parallelly.

2) Fully parallelized LNAST to LGraph: In
the LNAST to LGraph pass, the functional depen-
dency issue arises when there is a sub-module
instantiation in the HDL program. In LGraph, a
sub-module is represented as a sub-node with in-
puts and outputs connected inside the parent mod-
ule graph as shown in Figure 3-(a). From the
parent point of view, connecting an edge to the
corresponding sub-node input requires the knowl-
edge of all sub-module IO. However, suppose that
the LNAST to LGraph is multi-threaded, and all
LNASTs start the pass execution with a random
order. In such a scenario, the graph library cannot
guarantee that the sub-modules IO information is
ready for the parent when needed.
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Fig. 3. A sub-module instantiation in top-module. The sub-
module has inputs (a, b) and outputs (c1, c2). LiveHD aggregates
these IOs as tuple uInp/uOut to isolate functional dependency
while connecting the top and sub at the LNAST to LGraph pass.

LiveHD addresses this issue by proposing a novel
technique that uses unified input (uInp) and unified
output (uOut). An uInp or an uOut is an LGraph
tuple structure used to aggregate inputs or outputs
as shown in Figure 3. The uInp and uOut serve as



the single input and output per module during the
LNAST to LGraph step.

As the LNAST to LGraph iterates through the
parent LNAST, if there is a sub-module instantiation
statement, the LiveHD graph library will check
and try to create a sub-graph skeleton with a uIO
atomically. After that, regarding edges connected
toward the sub-module node, the parent first creates
tuple-add (TA) operators, collects all the edge driver
pins as the tuple fields, and connects this tuple to
the sub-module uInp. On the other hand, if the
parent module tries to connect edges from the sub-
module outputs, the parent graph creates tuple-get
(TG) operators and fetch field from sub-module
uOut tuple. LiveHD creates these uIO tuples around
the sub-module to break the dependency between
parent and child graphs. The uIO resolving process
is deferred until the CDCPATI pass, where all the
program tuples are handled together in a single
graph traversal. In this way, the LNAST to LGraph
pass becomes fully parallelizable.

3) Merged bottom-up parallelized passes:
LiveHD implements four classical compiler opti-
mizations on the day of writing: Copy Propagation,
Dead Code Elimination, Constant Propagation,
and Peephole Optimization(CDCP). For each
optimization, the algorithm starts from the
module inputs to traverse the graph locally.
Theoretically, the four passes in CDCP could be
fully parallelized.

However, graph traversal is a time-consuming ac-
tion. If LiveHD performs the passes of CDCP fully
parallelized, four individual graph-traversals will
be required. We seek the opportunities to combine
multiple passes in a single graph iteration to save
the iteration time. Therefore, in LiveHD implemen-
tation, the four passes of CDCP are merged with
other bottom-up parallelized passes. Thus the graph
traversal is minimized to just one iteration. LiveHD
currently merges seven functions into the CDCPATI
passes as shown in Figure 2-c.

Attribute Resolving, Tuple Resolving, and
IO Construction are three hardware-specific
functions required by all HDLs. These functions
are all tuple-related and have to be parallelized in
a bottom-up manner. This constraint exists because
the connections around the sub-module instance
node need to be resolved by flattening the uIO

tuple. Then the parent module could continue the
rest of the algorithm propagation.

4) Other bottom-up parallelized passes:
There are other three bottom-up parallelized
passes, FIRRTL Analysis, FIRRTL Mapping and
Bitwidth Inference. The algorithm in these passes
requires the sub-module outputs attribute to be
ready when the parent graph traversal visits them.

5) Verilog generation: This is the final stage
of the LiveHD compilation pipeline. Since the
functional dependencies between hierarchical mod-
ules have been resolved from the previous LiveHD
passes, LiveHD can run Verilog Generation with
full parallelization.

V. EVALUATION

The experiments were run on an AMD EPYC
7542 CPU @ 2.9 GHz with 512 GB of memory,
Kali3-AMD64 5.4.0 OS, and compiled with GCC
v10.2.1.

We compared the compilation speed on a syn-
thetic hierarchical design between Scala-FIRRTL
and LiveHD compilers. The design has a total of
130k lines of code (LoC) and 317 modules. The
sizes of modules are uniformly random distributed
from 1 to 800 with an average of 400. The design
hierarchy could be modeled as a balanced 4-ary
dependency tree with a height of 4.

Figure 4 shows that even when running with
single-threaded, LiveHD is 1.71x faster than Scala-
FIRRTL. When exploits 2 to 4 threads, the speed-up
is 3.1x to 4.99x and shows good scalability. When
applying 5 threads, since the synthetic design hier-
archy is a 4-ary tree and the bottom-up parallelism
constrains the parents to wait for their children, the
speed-up gaining trend is slow-down to 5.48x.
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FIRRTL compiler

VI. CONCLUSION

This paper identifies the fundamental challenge
and solutions for designing a parallel HDL com-
piler. The proposed LiveHD is the first parallelized



HDL compilation framework and could compile
FIRRTL HDL with up to 5.48x speed-up compared
to the original FIRRTL compiler.
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