OpenCache: An Open-Source
OpenRAM Based Cache Generator

Eren Dogan
Ozyegin University
Istanbul, Turkey 34794
eren.dogan @ozu.edu.tr

Abstract—Hardware caches are used in order to maximize the
average latency of large memory blocks. The client logic is usually
a CPU core but it may well be an application specific logic. How-
ever, designing a cache manually from scratch is difficult. In this
paper, we describe OpenCache, an open-source parameterized
IP core generator. OpenCache calls OpenRAM on the fly, while
considering OpenRAM efficiency issues. The current version of
OpenCache supports a single pipelined and in-order read-write
port on the client side. It outputs a synthesizable Verilog module
for cache logic and configuration files for OpenRAM to compile
internal SRAM blocks holding data and tags of the generated
cache.

I. INTRODUCTION

Processing units in computer hardware can be designed
to run much faster than memory units, thanks to hardware
techniques such as instruction pipelining and branch predic-
tion. Since processing units are limited by memory frequency,
sophisticated chip designs include hardware caches in order
to decrease memory access delays. Caches are quite fast
compared to especially Dynamic Random Access Memories
(DRAMs); however, they are complex, expensive, and hard to
design.

There are not many free and open-source tools, which also
support open-source Static Random Access Memory (SRAM)
compilation, available for designers that do not have enough
time and funding to focus on designing a custom cache. There
have been some studies on cache generators in the past. [1]
focused on FPGA deployment and [2] is a “lock cache” gener-
ator addressing multi-core synchronization problem. Neither of
them considers SRAM compilation and they are not available
for designers. Therefore, we propose OpenCache with the aim
to make designing caches faster and easier for research and
industry while enabling tape-out of these caches using the
OpenRAM memory compiler [3].

OpenCache is a generic hardware generator, which can be
further improved with new features. It builds on the OpenRAM
project [3], an open-source SRAM compiler available on
GitHub [4]. OpenCache takes the specifications of a cache
design as a configuration file input and generates configuration
files for OpenRAM to compile the internal SRAMs of the
cache. It also generates a synthesizable Verilog module for
the cache logic using the nMigen library [5].

H. Fatih Ugurdag
Ozyegin University
Istanbul, Turkey 34794
fatih.ugurdag @ozyegin.edu.tr

Matthew R. Guthaus
University of California Santa Cruz
Santa Cruz, CA 95064
mrg @ucsc.edu

II. ARCHITECTURE

In this section, some variables are used to explain the
architecture of OpenCache. These variables are defined in
Table I, and some of the variables on the right side of equations
are taken as parameters in the configuration file, which are
defined in Table IV of the Implementation section.

TABLE I
VARIABLES IN THE OPENCACHE.

Variable Equation

line_size word_size xwords_per_line

row_size line_size * num_ways

num_rows total_size/row_size

num_masks word_size/write_size

offset_size | logy(words_per_line)

set_size log, (num_rows)

tag_size address_size — set_size — offset_size

Input and output ports of a cache are illustrated in Figure 1,
and pins in the CPU interface and DRAM interface are shown
in Tables II and III, respectively. In this paper, we are referring
to a CPU and DRAM; however, OpenCache is not specific to
them. OpenCache can also be used for caches within an ASIC.
It can also be used for large SRAMs or it can interface to a
higher level cache instead of DRAM.

TABLE I
CPU INTERFACE OF THE CACHE.

Pin Size Direction Description
clk 1 Input System clock
rst 1 Input Reset
flush 1 Input Flush
csb 1 Input Chip select
web 1 Input Write enable
wmask num_masks Input Write mask
addr address_size Input Address
din word_size Input Data input
dout word_size Output Data output
stall 1 Output Pipeline stall

flush —»
csb —| —— main_csb —
web — —— main_web —»|
—— wmask —| — main_addr —»|
cPU addr —| Cache —— main_din —| DRAM
din —>| [€— main_dout —
[€—— dout [€— main_stall —
[€— stalll
Fig. 1. Ports of a cache.
TABLE IIT and data words in parallel if it has two separate caches for

DRAM INTERFACE OF THE CACHE.

Pin Size Direction | Description
main_csb 1 Output Chip select
main_web 1 Output Write enable
main_addr address_size Output Address
main_din line_size Output Data input
main_dout line_size Input Data output
main_stall 1 Input Stall

csb and web pins are active low since SRAMs generated
by OpenRAM also have active low csb and web. Size of
the dout pin depends on the return_type parameter. It is
word_size by default; however, some caches such as L2 and
L3, return a whole data line. In this case, size of the dout pin
is 1ine_size. Returning a data line is not yet implemented
in OpenCache but will be available soon.

The address pin of the cache consists of 3 parts: tag, set,
and offset. Offset is used to select a word in a cache line.
Set is used to find the row (set) of data array, which has the
requested address’ data. Tag is used to identify an address in
the set. It is used in tag comparison to find whether the request
is a hit or miss.

Address
Set

Offset

offset_size

Tag

tag_size | set_size

OpenCache has four parameters which together decide on
the features of the cache generated. These parameters are
is_data_cache, num_ways, replacement_policy,
and write_policy.

A. Cache Type

The cache type is chosen with the is_data_cache
parameter. A data cache is generated if is_data_cache is
true; otherwise, an instruction cache is generated. Instruction
caches do not have write operation. CPUs can fetch instruction

instruction and data. This way, the performance of the design
can be improved.

Only data caches can be generated using OpenCache at the
moment; however, instruction caches will be available in the
future.

B. Associativity

The associativity of a cache is chosen with the num_ways
parameter. Each way has its own entry in the tag and data
arrays, which have the following structures.

Tag Way Data Way
Set1 | V| D | Tag | Word Y Word 1
Set2 | V| D | Tag | Word Y Word 1
Set X V‘D‘Tag‘WordY‘...‘Wordl

V stands for “valid bit”, which shows whether the way has
valid data. If it is low, the way is empty and new data can be
placed in this way. D stands for “dirty bit” and shows whether
the data in the way has been modified. If a way is dirty, it needs
to be written back when cache miss occurs or during flush. X
is equal to num_rows and Y is equal to words_per_line.
In OpenCache, there are 2 associativities implemented.

1) Direct-mapped Cache: If num_ways is 1, the cache
generated by OpenCache will be a direct-mapped cache.
Direct-mapped caches have only 1 way for data placement.
If a cache miss occurs, the data in the set, which corresponds
to the address, is replaced.

2) N-way Set Associative Cache: If num_ways is more
than 1, the cache generated by OpenCache will be an N-
way set associative cache. Set associative caches have multiple
ways for data placement. If a cache miss occurs, a way in the
set corresponding to the address is replaced. The way to be
evicted is chosen according to the replacement policy of the
cache. This type of caches have N data arrays for each way
since combining all ways in a single array can cause problems
for large word_size and words_per_1line parameters.

C. Replacement Policy

The replacement policy of a cache is chosen with the
replacement_policy parameter. Replacement policies
select the way of data to replace after a cache miss. There are
3 different replacement policies implemented in OpenCache.

1) First In First Out (FIFO): In FIFO replacement, the set
to be evicted is chosen according to a queue of placement.
The data that has entered the queue the first gets evicted first.
When a cache uses FIFO replacement policy, it has an SRAM
array for FIFO pointer numbers.

There is a FIFO pointer number for each set in the cache,
which are used to decide the way to replace. These pointers
start from zero and increase each time a data is placed in their
corresponding set. When the cache places a data, it selects the
way that is pointed by the FIFO number of that set.

2) Least Recently Used (LRU): In LRU replacement, the set
to be evicted is chosen according to an order of access. The
data that is accessed earliest in time gets evicted first. When
the cache uses LRU replacement policy, it has an SRAM array
for LRU numbers. There are num_ways many LRU numbers
for each set in the cache, which are used together to decide
the way to replace.

Every time a way is used, its corresponding LRU number
is brought to the top of the order (maximum value) and all the
other LRU numbers, which are greater than its previous value,
are decreased by one. Every time a data is replaced, the way
that corresponds to the LRU number, which is equal to zero,
is chosen by the algorithm.

3) Random Replacement (RR): In random replacement, the
set to be evicted is chosen randomly. The cache has a register
which acts like a counter incremented by 1 at every positive
edge of the system clock. When the cache needs to evict a way,
it is chosen according to the counter register. Since there is no
guarantee when the cache will need to evict data or how long
it takes for DRAM to return the requested data, this approach
essentially replaces data randomly.

D. Write Policy

The write policy of a cache is chosen with the
write_policy parameter, and they decide how to perform
the write operation on cache data. Only “write-back policy” is
currently implemented in OpenCache. “Write-through policy”
will be available in the future.

1) Write-back: When a write request comes to a write-
back cache, it writes the data to its internal SRAM. Since the
internal SRAM is not synchronized with DRAM, DRAM’s
data may be old. When the modified data needs to be evicted,
which is either a flush or cache miss, it is written back to the
DRAM before overwriting the dirty data.

2) Write-through: In situations where atomicity is critical
such as banking, write-through caches are used in order to
provide a more reliable and secure system. When a write
request comes to a write-through cache, it writes the data to
the DRAM immediately.

E. Pipeline

OpenCache generates in-order pipelined caches, which help
provide better CPU performance. When a pipelined cache is
returning the data requested by the CPU, it also reads the
corresponding lines from its internal SRAMs for the next
request of the CPU. However, pipeline can also bring data
hazard if SRAMs are not read-after-write.

F. Data Hazard

OpenCache has a parameter named data_hazard to en-
able data hazard control. Since OpenCache generates pipelined
caches, when reading a line from the internal SRAMs, old data
may be received if there is a write to the same line at the same
cycle. If data_hazard parameter is true, generated caches
avoid causing this kind of data hazard by entering a stall state.

Some standard cell libraries might have bitcells that can
cause data hazard since they are not read-after-write. However,
if users of OpenCache can guarantee that their standard
cell library is going to be data hazard proof, they can set
data_hazard to false and generate the cache accordingly.

OpenCache does not support cache coherence, which en-
sures data uniformity across multiple cores via communication
between caches that use the same shared memory. There can
be data hazard in a system where multiple processing units
access the same memory address and have different values
because of cache incoherence.

III. IMPLEMENTATION

OpenCache is implemented in Python and is available on
GitHub [6]. The structure of the generator is similar to Open-
RAM’s structure for convenience. OpenCache uses nMigen
library [5], which is a Python toolbox for hardware design.
It takes a Python file as input which is supposed to be the
configuration file including the parameters of the cache to be
generated. All OpenCache parameters are listed in Table I'V.

TABLE IV
PARAMETERS OF OPENCACHE.

Parameter Description

total_size Size of the data array

word_size Size of a machine word

words_per_line Number of words per line

address_size Size of the address pin

write_size Size of data for a write mask bit

num_ways Number of ways of the cache

replacement_policy | Replacement policy of the cache

write_policy Write policy of the cache

is_data_cache Data or instruction cache

return_type Return either a word or line

If SRAMs are not read-after-write
Enable simulation (disabled by default)
Enable synthesis (disabled by default)

data_hazard

simulate

synthesize

The generator is used by running the opencache.py file
with a Python interpreter. opencache.py accepts parameters,
instantiates design modules, performs design verification, and
saves output files. The cache class decides and instantiates
a specific design module according to the associativity and
replacement policy of the desired cache. Logic blocks in the
synthesizable Verilog are implemented in block classes using
the nMigen library.

In addition to parameterization, OpenCache supports design
verification for regression testing. This feature of OpenCache
makes it possible to detect bugs and verify new features.
OpenCache uses FuseSoC [7] in order to use EDA tools for
simulation and synthesis of generated caches. Currently, Icarus
[8] is the supported tool for simulation and Yosys [9] is the
supported tool for synthesis. Support for more EDA tools can
be added for verification in the future, thanks to FuseSoC'’s
support for many EDA tools.

IV. CONCLUSION AND FUTURE WORK

Our work introduces an open-source cache generator called
OpenCache. OpenCache generates synthesizable Verilog files
for the cache logic and builds on top of the OpenRAM project
of Guthaus et al. [3] to compile the SRAMs, which are used
inside the generated cache.

The OpenCache project is implemented to enable easier and
faster custom cache design for research. Our intention is to
make OpenCache generic and flexible so that new features
can be added in the future. Some missing features are already
expressed in this paper. We are actively developing OpenCache
to implement the missing and new features.

OpenCache does not take into account the read-write race
conditions that might occur (depending on the DRAM used).
This problem may be addressed in the future by adding a
control mechanism to OpenCache.

Currently, OpenCache is an in-order memory, meaning that
caches respond to requests in the same order they arrive.
OpenCache can be improved to support out-of-order execution
for better performance. Since OpenCache generates single port
memory, multi port cache support can also be added in the
future.

REFERENCES

[1] P. Yiannacouras and J. Rose, “A Parameterized Automatic Cache Gener-
ator for FPGAs,” Proceedings of the International Conference on Field-
Programmable Technology (FPT), pp. 324-327, 2003.

[2] B.E.S. Akgul and V. J. Mooney, “PARLAK: Parametrized Lock Cache
Generator,” Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 1138-1139, 2003.

[3] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,
“OpenRAM: An Open-Source Memory Compiler,” Proceedings of the
International Conference on Computer-Aided Design (ICCAD), pp. 1-6,
2016.

[4] M. R. Guthaus, “OpenRAM,” GitHub. [Online]. Available:
https://github.com/VLSIDA/OpenRAM. [Accessed: 29-Aug-2021].

[51 “nMigen,” GitHub. [Online]. Available:
https://github.com/nmigen/nmigen. [Accessed: 29-Aug-2021].
[6] “OpenCache,” GitHub. [Online]. Available:

https://github.com/VLSIDA/OpenCache. [Accessed: 29-Aug-2021].

[7] O. Kindgren, “FuseSoC,” GitHub. [Online]. Available:
https://github.com/olofk/fusesoc. [Accessed: 29-Aug-2021].
[8] S. Williams, “Icarus Verilog,” GitHub. [Online]. Available:

https://github.com/steveicarus/iverilog. [Accessed: 29-Aug-2021].
[9] C. X. Wollf, “Yosys,” GitHub. [Online]. Available:
https://github.com/YosysHQ/yosys. [Accessed: 29-Aug-2021].

