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Hardware Designing is 
getting easier...

Conventionally, HW designing 
was done in Verilog/VHDL Digital 
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Hardware 
designing

New HDLs 
like Chisel, 

PyRTL, 
Mamba, etc.
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Then what’s the problem?

• Every new HDL has its own compiler flow. 
• Hence corresponding compiler optimization passes 

were designed.
• Verification and testing for each of these language-

compiler infrastructure were carried out.
• Too much redundancy!
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Thus, we propose:

Create a new HDL by 
leveraging pre-existing 

multi-language 
compiler flows

X-Lang Y-Flow

SSA transformations 

Dead code elimination

Copy propagation

Bit Width optimization
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Uh oh!

X-Lang Y-Flow

SSA transformations 

Dead code elimination

Copy propagation

Bit Width optimization
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• Let’s have a way to verify the X-lang compiler flow by 
having high coverage.

The proposal!

• Let’s not implement reference compilers. 
• Let’s leverage Y-flow cost-effectively!
• No more extensive Verilog simulations needed to verify 

the system.
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X-Lang to X-Lang 
LEC

X-Lang to 
Verilog Tests

Random/ 
Synthetic 
program 

generation

Let’s have a way to verify the X-lang 
compiler flow by having high 
coverage. Let’s not implement 
reference compilers. Let’s leverage 
Y-flow cost-effectively!

The proposal!

X-lang
Input

Interfacing

X-lang
Generation

Semantically 
Same 

programs



Using an Example Implementation

X-Lang Y-Flow

SSA transformations 

Dead code elimination

Copy propagation

Bit Width optimization
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Pyrope LiveHD



Pyrope LiveHD

X-lang
Input

Interfacing

X-lang
Generation

PyropeLNAST LiveHD (LGraph) LNAST
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Example Implementation

* Code and implementation details can be accessed at https://github.com/masc-ucsc/livehd 



X-Lang to X-Lang LEC
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X-Lang Y-Flow

Verilog 
(V1)

Y-Flow X-Lang 
(X1) Y-Flow
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Test

Verilog 
(V2)



X-Lang to X-Lang LEC
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X-Lang Y-Flow

Verilog 
(V1)

Y-Flow X-Lang 
(X1) Y-Flow

X-lang
Input

Interfacing
X-lang

Generation

LEC 
Test

Verilog 
(V2)

Checks only a subset of the X-lang!
Might not cover all the features of the language.



X-Lang to Verilog Tests

X-Lang Y-Flow

Verilog 
(V1)

X-lang
Input

Interfacing

LEC 
Test

Verilog 
(V2)

Semantically 
Same
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To cover the remaining 
features of the language.



Bank of 
randomly/manually 
generated programs

Random/Synthetic program generation

X-Lang to X-Lang LEC

X-Lang to Verilog 
Tests

X-Lang
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Conclusively…

New HDL developers can leverage exiting multi-language compiler flows for the HDL.

Provide reliability and trust earlier in the design flow 

Shorter development cycle 

No reference compiler required for flow verification 

Saved tremendous efforts of the new language developers 

Detect issues in any part of the X-Lang compiler infrastructure formed.

X-lang can now be translated to other Y-flow-supported HDLs.
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