
A Guide for Rapid Creation of New 
HDLs

Sakshi Garg, Sheng-Hong Wang, Jose Renau
Department of CSE

University of California, Santa Cruz
WOSET 2021



Hardware Designing is 
getting easier...

Conventionally, HW designing 
was done in Verilog/VHDL Digital 

Hardware 
Designing

Object 
Oriented 

programming

Functional 
Programming

Module 
Reusability

Agile 
Hardware 
designing

New HDLs 
like Chisel, 

PyRTL, 
Mamba, etc.

Sakshi (MASC, UCSC) 2



Then what’s the problem?

• Every new HDL has its own compiler flow. 
• Hence corresponding compiler optimization passes 

were designed.
• Verification and testing for each of these language-

compiler infrastructure were carried out.
• Too much redundancy!

Sakshi (MASC, UCSC) 3



Thus, we propose:

Create a new HDL by 
leveraging pre-existing 

multi-language 
compiler flows

X-Lang Y-Flow

SSA transformations 

Dead code elimination

Copy propagation

Bit Width optimization

Sakshi (MASC, UCSC) 4



Uh oh!

X-Lang Y-Flow

SSA transformations 

Dead code elimination

Copy propagation

Bit Width optimization

Sakshi (MASC, UCSC) 5



Sakshi (MASC, UCSC) 6

• Let’s have a way to verify the X-lang compiler flow by 
having high coverage.

The proposal!

• Let’s not implement reference compilers. 
• Let’s leverage Y-flow cost-effectively!
• No more extensive Verilog simulations needed to verify 

the system.



Sakshi (MASC, UCSC) 7

X-Lang to X-Lang 
LEC

X-Lang to 
Verilog Tests

Random/ 
Synthetic 
program 

generation

Let’s have a way to verify the X-lang 
compiler flow by having high 
coverage. Let’s not implement 
reference compilers. Let’s leverage 
Y-flow cost-effectively!

The proposal!

X-lang
Input

Interfacing

X-lang
Generation

Semantically 
Same 

programs



Using an Example Implementation

X-Lang Y-Flow

SSA transformations 

Dead code elimination

Copy propagation

Bit Width optimization

Sakshi (MASC, UCSC) 8

Pyrope LiveHD



Pyrope LiveHD

X-lang
Input

Interfacing

X-lang
Generation

PyropeLNAST LiveHD (LGraph) LNAST

Sakshi (MASC, UCSC) 9

Example Implementation

* Code and implementation details can be accessed at https://github.com/masc-ucsc/livehd 



X-Lang to X-Lang LEC

Sakshi (MASC, UCSC) 10

X-Lang Y-Flow

Verilog 
(V1)

Y-Flow X-Lang 
(X1) Y-Flow

X-lang
Input

Interfacing
X-lang

Generation

LEC 
Test

Verilog 
(V2)



X-Lang to X-Lang LEC

Sakshi (MASC, UCSC) 11

X-Lang Y-Flow

Verilog 
(V1)

Y-Flow X-Lang 
(X1) Y-Flow

X-lang
Input

Interfacing
X-lang

Generation

LEC 
Test

Verilog 
(V2)

Checks only a subset of the X-lang!
Might not cover all the features of the language.



X-Lang to Verilog Tests

X-Lang Y-Flow

Verilog 
(V1)

X-lang
Input

Interfacing

LEC 
Test

Verilog 
(V2)

Semantically 
Same

Sakshi (MASC, UCSC) 12

To cover the remaining 
features of the language.



Bank of 
randomly/manually 
generated programs

Random/Synthetic program generation

X-Lang to X-Lang LEC

X-Lang to Verilog 
Tests

X-Lang

Sakshi (MASC, UCSC) 13



Conclusively…

New HDL developers can leverage exiting multi-language compiler flows for the HDL.

Provide reliability and trust earlier in the design flow 

Shorter development cycle 

No reference compiler required for flow verification 

Saved tremendous efforts of the new language developers 

Detect issues in any part of the X-Lang compiler infrastructure formed.

X-lang can now be translated to other Y-flow-supported HDLs.

Sakshi (MASC, UCSC) 14



Acknowledgements

This work has been supported by the Center for Research
in Open Source Software (CROSS) at UC Santa Cruz. This
material is based upon work supported by, or in part by,
the Army Research Laboratory and the Army Research
Office under contract/grant W911NF1910466.
Thanks to Sheng-Hong and Dr. Renau for their continuous
feedback and support.

Thanks to Mark Zakharov for his contribution to
semantically same program generation.

Sakshi (MASC, UCSC) 15



Sakshi (MASC, UCSC) 16


	A Guide for Rapid Creation of New HDLs
	Hardware Designing is getting easier...
	Then what’s the problem?
	Thus, we propose:
	Uh oh!
	Let’s have a way to verify the X-lang compiler flow by having high coverage.
	Let’s have a way to verify the X-lang compiler flow by having high coverage. Let’s not implement reference compilers. Let’s leverage Y-flow cost-effectively!�
	Using an Example Implementation
	Slide Number 9
	X-Lang to X-Lang LEC
	X-Lang to X-Lang LEC
	X-Lang to Verilog Tests
	Random/Synthetic program generation
	Conclusively…
	Acknowledgements
	Slide Number 16

