
ESSENT:
A High-Performance RTL Simulator

Scott Beamer Thomas Nijssen
Krishna Pandian Kyle Zhang

Computer Science & Engineering Dept.
University of California, Santa Cruz

https://github.com/ucsc-vama/essent

https://github.com/ucsc-vama/essent

Simulation Speed Limits HW Design

Simulation is a crucial tool for HW design

2

Accelerate Simulation Rate

+ Faster interactions with human users
+ Reduce costs by saving on simulation infrastructure
+ Enables larger design space for better QoR

Development Debugging Verification

X
Validation

√

Alternatives to Software Simulation

Reduce fidelity w/ transaction-level models
• SystemC

Use hardware acceleration
• FPGA simulation (e.g. FireSim/MIDAS)
• Custom ASICS (e.g. Palladium)

Above approaches are complimentary, but cycle-
accurate SW simulation is still commonly used
because of faster start-up and lower up-front costs
• SW also great for agile / open-source design

3

Introducing ESSENT 4

Essential Signal Simulation Enabled by Netlist
Transformations (ESSENT)

Software RTL simulator focussed on speed

Takes FIRRTL as input, emits C++ for simulator

FIRRTL produced by Chisel, LiveHD, Yosys

Uses various optimization to save work while still
producing cycle-accurate result

Enabled by efficient & user-friendly partitioner

https://github.com/ucsc-vama/essent

https://github.com/ucsc-vama/essent

RTL Simulation Approach Tradeoffs 5

Full
Cycle

Event
Driven

This
Work

O
ve

rh
ea

d

Portion of Design Simulated (per cycle)

Dynamic
Schedule

Static
Schedule

Active Portion Entire Design

Summary of this Work:
Low-overhead techniques
to reduce the fraction of
the design simulation to
speed up simulation

Insight: Most signals rarely change,
so should reuse unchanged values

Challenge: How to reduce overhead
while finding opportunities for reuse

Reuse Example

Leverage low-activity by
reusing outputs if inputs
unchanged

6

Reuse Example

Leverage low-activity by
reusing outputs if inputs
unchanged

Reduce overheads by
coarsening reuse
granularity

6

Reuse Example

Leverage low-activity by
reusing outputs if inputs
unchanged

Reduce overheads by
coarsening reuse
granularity

6

Key Features of Efficient Simulation

Conditional
• Only evaluate signals if their inputs change
• Otherwise, reuse old outputs

Coarsened
• Amortize overheads over multiple signals

Singular
• Evaluate each signal at most once per cycle

Static
• Perform scheduling in advance at compile time

All combined, is our CCSS Approach

7

(needs partitions)

(needs acyclic) A
cy

cl
ic

Pa

rt
iti

on
in

g

A
ut

om
at

ed
 C

od
e

G
en

er
at

io
n

Other ESSENT Optimizations

Don’t simulate signals
who will not persist
(unselected mux ways)

8

MUX0 1

Other ESSENT Optimizations

Don’t simulate signals
who will not persist
(unselected mux ways)

8

MUX0 10

Other ESSENT Optimizations

Don’t simulate signals
who will not persist
(unselected mux ways)

Elide intermediate
register updates, even
in partitions

Give compiler branch
hints for unlikely paths
(asserts, prints, reset)

8

MUX0 10

Evaluation Methodology

Workload: Rocket Chip (RISC-V SoC) from
different years executing dhrystone

9

Name  
(year)

Verilog  
(lines)

FIRRTL 
(nodes)

FIRRTL 
(edges)

rocket16 112,167 26,554 47,290
rocket18 328,367 71,545 123,226
rocket20 246,589 70,349 120,236

Simulators: ESSENT (with varying
optimization level) vs. Verilator

Host Platform: 8-core 3.6 GHz Intel Skylake

Performance Comparison 10

ESSENT is Open Source!

https://github.com/ucsc-vama/essent

Includes example integrations with
Rocket Chip & riscv-mini

Useful for simulation and as a starting point for
future simulation research

Written in Scala to reuse FIRRTL library and passes

Released C++ arbitrary width signal library:
https://github.com/ucsc-vama/firrtl-sig

11

https://github.com/ucsc-vama/essent
https://github.com/ucsc-vama/firrtl-sig

Ongoing & Future Work

Declare version 1.0 (very close)

Improve tool scalability with faster
generation time (better algorithms) and
multicore-parallel simulation

Create more example integrations

Improve interoperability with other tools

• SST (for mixed simulation)

12

Conclusion

ESSENT is a fast cycle-accurate simulator

• Executes fewer instructions by leveraging
low activity that is common in designs

• Enabled by CCSS approach & partitioner

ESSENT is open source and eager to work
with your project
https://github.com/ucsc-vama/essent

Contact Scott Beamer (sbeamer@ucsc.edu)

13

https://github.com/ucsc-vama/essent
mailto:sbeamer@ucsc.edu

Acknowledgements

Contributors & Collaborators
• Lawrence Berkeley National Laboratory (LBL)

• David Donofrio
• John Bachan

• University of California, Santa Cruz (UCSC)
• Thomas Nijssen
• Krisha Pandian
• Kyle Zhang

Funding
• Army Research Office

14

Publications

A Case for Accelerating Software RTL Simulation
Scott Beamer
IEEE Micro, 2020

Efficiently Exploiting Low Activity Factors to
Accelerate RTL Simulation
Scott Beamer and David Donofrio
Design Automation Conference (DAC), 2020

15

Backup Slides

Classic Simulation Approaches

Substantial
scheduling overhead
for tracking priorities

Activity-proportional

17

Eliminates overhead
with static schedule
(requires acyclic)

Activity-agnostic

SimulatorDesign Optimizing
CompilerDesign Custom

Simulator

Event-Driven Full-Cycle

Despite commonly low activity factors, in
practice, full-cycle is typically faster
because of reduced overheads

Graph Abstraction Simplifies Problem

View hardware design as a directed graph

For today, design graphs are acyclic

• No combinational loops allowed

• Break up feedback path through registers
by splitting them into inputs & outputs

18

+ A Rin
Rout

RA

I I

Scheduling is Big Part of Simulation

Want to schedule work to avoid evaluating
same HW more than once per cycle

Levelization - evaluate an entire level
before advancing (like BFS)

19

I1 I2 I3

+

+

I1 I2 I3
A1

A2

A1

A2

Level 0

Level 1

Level 2

Novel Acyclic Partitioner

Key Contribution: Novel Acyclic Partitioner
• Focus on speed and specifics of this problem
• User doesn’t need to modify design or provide parameters

Algorithm: Greedily merges partitions until sufficiently coarse
• We propose safety criteria & heuristics to select good merges
• Bootstrap with maximum fanout free cones (MFFC)

20

Small partition

Arbitrary partition

Phase 1 Phase 2 Phase 3

New partition

Example High-Level Generated Code 21

…
evalP2()
 active[2] = false
 C$old = C
 C = A + B
 active[3] |= C != C$old
…
eval()
 …
 if (active[2])
 evalP2()
 …

main()
 for (max_cycles)
 eval()

A B

C

P1

P2

P3

+

