ESSENT:
A High-Performance RTL Simulator

Scott Beamer Thomas Nijssen
Krishna Pandian Kyle Zhang

Computer Science & Engineering Dept.
University of California, Santa Cruz

https://github.com/ucsc-vama/essent

https://github.com/ucsc-vama/essent

Simulation Speed Limits HW Design @

O Simulation is a crucial tool for HW design

12 I8 5 b

Development Debugging Verification Validation

+ Faster interactions with human users

+ Reduce costs by saving on simulation infrastructure
+ Enables larger design space for better QoR

Alternatives to Software Simulation @

O Reduce fidelity w/ transaction-level models
® SystemC

O Use hardware acceleration
® FPGA simulation (e.g. FireSim/MIDAS)
® Custom ASICS (e.g. Palladium)

O Above approaches are complimentary, but cycle-
accurate SW simulation is still commonly used
because of taster start-up and lower up-front costs

® SW also great for agile / open-source design

Introducing ESSENT @

O Essential Signal Simulation Enabled by Netlist
Transformations (ESSENT)

O Software RTL simulator focussed on speed
O Takes FIRRTL as input, emits C++ for simulator
O FIRRTL produced by Chisel, LiveHD, Yosys

O Uses various optimization to save work while still
producing cycle-accurate result

O Enabled by efficient & user-friendly partitioner

O https://github.com/ucsc-vama/essent

https://github.com/ucsc-vama/essent

RTL Simulation Approach Tradeoffs @

O Insight: Most signals rarely change,

so should reuse unchanged values
A
Dynamic O Challenge: How to reduce overhead

Schedule while finding opportunities for reuse

O Summary of this Work:
Low-overhead techniques
to reduce the fraction of

This the design simulation to
Work speed up simulation
Static Full
Schedule Cycle
>

Active Portion Entire Design

Overhead

Portion of Design Simulated (per cycle)

Reuse Example @

'

O Leverage low-activity by
reusing outputs if inputs
unchanged

Reuse Example @

O Leverage low-activity by
reusing outputs if inputs
unchanged

O Reduce overheads by
coarsening reuse
granularity

Reuse Example @

O Leverage low-activity by
reusing outputs if inputs
unchanged

O Reduce overheads by
coarsening reuse
granularity

Key Features of Efficient Simulation

O Conditional

® Only evaluate signals if their inputs change

® (Otherwise, reuse old outputs

O Coarsened (needs partitions)

® Amortize overheads over multiple signals

O Singular (needs acyclic)

® [valuate each signal at most once per cycle

O Static

® Perform scheduling in advance at compile time

O All combined, is our CCSS Approach

Partitioning

Other ESSENT Optimizations

O Don't simulate signals \Cg l l

who will not persist
(unselected mux ways)

O Don't simulate signals
who will not persist \t%
(unselected mux ways)

Other ESSENT Optimizations

O Don't simulate signals
who will not persist \t%

(unselected mux ways)

O Elide intermediate C{
register updates, even

In partitions v
5 :
O Give compiler branch ‘;\ i /
hints for unlikely paths v

(asserts, prints, reset)

Evaluation Methodology @

O Workload: Rocket Chip (RISC-V SoC) from
different years executing dhrystone

Name Verilog FIRRTL FIRRTL

(year) (lines) (nodes) (edges)
rocket16 112,167 26,554 47,290
rocket18 328,367 71,545 123,226
rocket20 246,589 70,349 120,236

O Simulators: ESSENT (with varying
optimization level) vs. Verilator

O Host Platform: 8-core 3.6 GHz Intel Skylake

Performance Comparison

Bl Verilator
g| M ESSENT-OO| | | -
B ESSENT -0O1
. 1 ESSENT -0O2
o °|/OdESSENT-O3| |)
©
()
S
Q4L L -
2L _
0

rocketl6 rocketl8 rocket20
Design

ESSENT is Open Source!

O https://github.com/ucsc-vama/essent

O

O

ncludes example integrations with

Rocket Chip & riscv-mini

Useful for simulation and as a starting point for

future simulation research

(1)

O Written in Scala to reuse FIRRTL library and passes

O

Released C++ arbitrary width signal library:

nttps://github.com/ucsc-vama/tirrtl-sig

https://github.com/ucsc-vama/essent
https://github.com/ucsc-vama/firrtl-sig

Ongoing & Future Work

O Declare version 1.0 (very close)

O Improve tool scalability with faster
generation time (better algorithms) and
multicore-parallel simulation

O Create more example integrations
O Improve interoperability with other tools

® SST (for mixed simulation)

(1)

O ESSENT is a fast cycle-accurate simulator

® Executes fewer instructions by leveraging
low activity that is common in designs

® Enabled by CCSS approach & partitioner

O ESSENT is open source and eager to work
with your project

https://github.com/ucsc-vama/essent

O Contact Scott Beamer (sbeamer@ucsc.edu)

https://github.com/ucsc-vama/essent
mailto:sbeamer@ucsc.edu

Acknowledgements

O Contributors & Collaborators
® |awrence Berkeley National Laboratory (LBL)
® David Donofrio
® John Bachan
® University of California, Santa Cruz (UCSC)
® Thomas Nijssen
® Krisha Pandian
® Kyle Zhang
O Funding
® Army Research Office

O A Case for Accelerating Software RTL Simulation

Scott Beamer
|[EEE Micro, 2020

O Efficiently Exploiting Low Activity Factors to

Accelerate RTL Simulation

Scott Beamer and David Donofrio
Design Automation Conference (DAC), 2020

Backup Slides

Classic Simulation Approaches @

Event-Driven Full-Cycle
O Substantial O Eliminates overhead
scheduling overhead with static schedule
for tracking priorities (requires acyclic)

O Activity-proportional @ Activity-agnostic

Optimizing Custom
Compiler Simulator

O Despite commonly low activity factors, in

practice, full-cycle is typically faster
because of reduced overheads

Graph Abstraction Simplifies Problem

O View hardware design as a directed graph
O For today, design graphs are acyclic
® No combinational loops allowed

® Break up feedback path through registers
by splitting them into inputs & outputs

Scheduling is Big Part of Simulation

O Want to schedule work to avoid evaluating
same HW more than once per cycle

O Levelization - evaluate an entire level
before advancing (like BFS)

Novel Acyclic Partitioner

\ Y New partition

| |
N
| I
WJ)

-a o

\ y/ l _l l_ | : Xﬁ}&_ ’(_ ‘ Arbitrary partition

O Small partition

GEED GG aGE» Az ————J

Phase 1 Phase 2 Phase 3

O Key Contribution: Novel Acyclic Partitioner

-ocus on speed and specifics of this problem

User doesn’t need to modity design or provide parameters

O Algorithm: Greedily merges partitions until sufficiently coarse

® \We propose safety criteria & heuristics to select good merges

® Bootstrap with maximum fanout free cones (MFFC)

Example High-Level Generated Code @

gvalPZ()

—————————————— l active[2] = false
 P1 l
I A B | C$01d — C
l _____________ ! C=A+8B
,---—-i’ ————— &———, active[3] |= C !'= C%old
:P2 |
\/ ! .

: \ M / : eval ()
| .
R) if (active[2])
e ' evalP2()
: P3 \ |

[
[
' C : main()

for (max _cycles)
eval ()

