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Simulation Speed Limits HW Design @

O Simulation is a crucial tool for HW design
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+ Faster interactions with human users

+ Reduce costs by saving on simulation infrastructure
+ Enables larger design space for better QoR



Alternatives to Software Simulation @

O Reduce fidelity w/ transaction-level models
® SystemC

O Use hardware acceleration
® FPGA simulation (e.g. FireSim/MIDAS)
® Custom ASICS (e.g. Palladium)

O Above approaches are complimentary, but cycle-
accurate SW simulation is still commonly used
because of taster start-up and lower up-front costs

® SW also great for agile / open-source design



Introducing ESSENT @

O Essential Signal Simulation Enabled by Netlist
Transformations (ESSENT)

O Software RTL simulator focussed on speed
O Takes FIRRTL as input, emits C++ for simulator
O FIRRTL produced by Chisel, LiveHD, Yosys

O Uses various optimization to save work while still
producing cycle-accurate result

O Enabled by efficient & user-friendly partitioner

O https://github.com/ucsc-vama/essent
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RTL Simulation Approach Tradeoffs @

O Insight: Most signals rarely change,

so should reuse unchanged values
A
Dynamic O Challenge: How to reduce overhead

Schedule while finding opportunities for reuse

O Summary of this Work:
Low-overhead techniques
to reduce the fraction of

This the design simulation to
Work speed up simulation
Static Full
Schedule Cycle
>

Active Portion Entire Design

Overhead

Portion of Design Simulated (per cycle)



Reuse Example @

'

O Leverage low-activity by
reusing outputs if inputs
unchanged
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Key Features of Efficient Simulation

O Conditional

® Only evaluate signals if their inputs change

® (Otherwise, reuse old outputs

O Coarsened (needs partitions)

® Amortize overheads over multiple signals

O Singular (needs acyclic)

® [valuate each signal at most once per cycle

O Static

® Perform scheduling in advance at compile time

O All combined, is our CCSS Approach

Partitioning




Other ESSENT Optimizations

O Don't simulate signals \Cg l l

who will not persist
(unselected mux ways)
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Other ESSENT Optimizations

O Don't simulate signals
who will not persist \t%

(unselected mux ways)

O Elide intermediate C{
register updates, even

In partitions v
5 :
O Give compiler branch ‘;\ i /
hints for unlikely paths v

(asserts, prints, reset)



Evaluation Methodology @

O Workload: Rocket Chip (RISC-V SoC) from
different years executing dhrystone

Name Verilog FIRRTL FIRRTL

(year) (lines) (nodes) (edges)
rocket16 112,167 26,554 47,290
rocket18 328,367 71,545 123,226
rocket20 246,589 70,349 120,236

O Simulators: ESSENT (with varying
optimization level) vs. Verilator

O Host Platform: 8-core 3.6 GHz Intel Skylake



Performance Comparison
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ESSENT is Open Source!

O https://github.com/ucsc-vama/essent

O

O

ncludes example integrations with

Rocket Chip & riscv-mini

Useful for simulation and as a starting point for

future simulation research

(1)

O Written in Scala to reuse FIRRTL library and passes

O

Released C++ arbitrary width signal library:

nttps://github.com/ucsc-vama/tirrtl-sig
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Ongoing & Future Work

O Declare version 1.0 (very close)

O Improve tool scalability with faster
generation time (better algorithms) and
multicore-parallel simulation

O Create more example integrations
O Improve interoperability with other tools

® SST (for mixed simulation)

(1)



O ESSENT is a fast cycle-accurate simulator

® Executes fewer instructions by leveraging
low activity that is common in designs

® Enabled by CCSS approach & partitioner

O ESSENT is open source and eager to work
with your project

https://github.com/ucsc-vama/essent

O Contact Scott Beamer (sbeamer@ucsc.edu)
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Classic Simulation Approaches @

Event-Driven Full-Cycle
O Substantial O Eliminates overhead
scheduling overhead with static schedule
for tracking priorities (requires acyclic)

O Activity-proportional @ Activity-agnostic

Optimizing Custom
Compiler Simulator

O Despite commonly low activity factors, in

practice, full-cycle is typically faster
because of reduced overheads



Graph Abstraction Simplifies Problem

O View hardware design as a directed graph
O For today, design graphs are acyclic
® No combinational loops allowed

® Break up feedback path through registers
by splitting them into inputs & outputs



Scheduling is Big Part of Simulation

O Want to schedule work to avoid evaluating
same HW more than once per cycle

O Levelization - evaluate an entire level
before advancing (like BFS)



Novel Acyclic Partitioner
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O Key Contribution: Novel Acyclic Partitioner

-ocus on speed and specifics of this problem

User doesn’t need to modity design or provide parameters

O Algorithm: Greedily merges partitions until sufficiently coarse

® \We propose safety criteria & heuristics to select good merges

® Bootstrap with maximum fanout free cones (MFFC)



Example High-Level Generated Code @

gvalPZ()
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' C : main()

for (max _cycles)
eval ()



