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Simulation Speed Limits HW Design

Simulation is a crucial tool for HW design
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Accelerate Simulation Rate

+ Faster interactions with human users 
+ Reduce costs by saving on simulation infrastructure 
+ Enables larger design space for better QoR
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Alternatives to Software Simulation

Reduce fidelity w/ transaction-level models 
• SystemC

Use hardware acceleration 
• FPGA simulation (e.g. FireSim/MIDAS) 
• Custom ASICS (e.g. Palladium)

Above approaches are complimentary, but cycle-
accurate SW simulation is still commonly used 
because of faster start-up and lower up-front costs 
• SW also great for agile / open-source design
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Introducing ESSENT 4

Essential Signal Simulation Enabled by Netlist 
Transformations (ESSENT)

Software RTL simulator focussed on speed

Takes FIRRTL as input, emits C++ for simulator

FIRRTL produced by Chisel, LiveHD, Yosys

Uses various optimization to save work while still 
producing cycle-accurate result

Enabled by efficient & user-friendly partitioner

https://github.com/ucsc-vama/essent

https://github.com/ucsc-vama/essent


RTL Simulation Approach Tradeoffs 5
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Summary of this Work:  
Low-overhead techniques 
to reduce the fraction of 
the design simulation to 
speed up simulation

Insight: Most signals rarely change, 
so should reuse unchanged values

Challenge: How to reduce overhead 
while finding opportunities for reuse



Reuse Example

Leverage low-activity by 
reusing outputs if inputs 
unchanged
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Reuse Example
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Key Features of Efficient Simulation

Conditional 
• Only evaluate signals if their inputs change 
• Otherwise, reuse old outputs

Coarsened 
• Amortize overheads over multiple signals

Singular 
• Evaluate each signal at most once per cycle

Static 
• Perform scheduling in advance at compile time

All combined, is our CCSS Approach
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Other ESSENT Optimizations

Don’t simulate signals 
who will not persist 
(unselected mux ways)
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Other ESSENT Optimizations

Don’t simulate signals 
who will not persist 
(unselected mux ways)
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Other ESSENT Optimizations

Don’t simulate signals 
who will not persist 
(unselected mux ways)

Elide intermediate 
register updates, even 
in partitions

Give compiler branch 
hints for unlikely paths 
(asserts, prints, reset)
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Evaluation Methodology

Workload: Rocket Chip (RISC-V SoC) from 
different years executing dhrystone
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Name  
(year)

Verilog  
(lines)

FIRRTL 
(nodes)

FIRRTL 
(edges)

rocket16 112,167 26,554 47,290
rocket18 328,367 71,545 123,226
rocket20 246,589 70,349 120,236

Simulators: ESSENT (with varying 
optimization level) vs. Verilator 

Host Platform: 8-core 3.6 GHz Intel Skylake



Performance Comparison 10



ESSENT is Open Source!

https://github.com/ucsc-vama/essent 

Includes example integrations with 
Rocket Chip & riscv-mini 

Useful for simulation and as a starting point for 
future simulation research 

Written in Scala to reuse FIRRTL library and passes 

Released C++ arbitrary width signal library: 
https://github.com/ucsc-vama/firrtl-sig
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Ongoing & Future Work

Declare version 1.0 (very close)

Improve tool scalability with faster 
generation time (better algorithms) and 
multicore-parallel simulation

Create more example integrations

Improve interoperability with other tools

• SST (for mixed simulation)
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Conclusion

ESSENT is a fast cycle-accurate simulator 

• Executes fewer instructions by leveraging 
low activity that is common in designs 

• Enabled by CCSS approach & partitioner

ESSENT is open source and eager to work 
with your project 
https://github.com/ucsc-vama/essent

Contact Scott Beamer (sbeamer@ucsc.edu)
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Classic Simulation Approaches

Substantial 
scheduling overhead 
for tracking priorities 

Activity-proportional
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Eliminates overhead 
with static schedule 
(requires acyclic) 

Activity-agnostic

SimulatorDesign Optimizing 
CompilerDesign Custom 

Simulator

Event-Driven Full-Cycle

Despite commonly low activity factors, in 
practice, full-cycle is typically faster 
because of reduced overheads



Graph Abstraction Simplifies Problem

View hardware design as a directed graph

For today, design graphs are acyclic 

• No combinational loops allowed 

• Break up feedback path through registers 
by splitting them into inputs & outputs
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Scheduling is  Big Part of Simulation

Want to schedule work to avoid evaluating 
same HW more than once per cycle

Levelization - evaluate an entire level 
before advancing (like BFS)

19

I1 I2 I3

+

+

I1 I2 I3
A1

A2

A1

A2

Level 0

Level 1

Level 2



Novel Acyclic Partitioner

Key Contribution: Novel Acyclic Partitioner 
• Focus on speed and specifics of this problem 
• User doesn’t need to modify design or provide parameters

Algorithm: Greedily merges partitions until sufficiently coarse 
• We propose safety criteria & heuristics to select good merges 
• Bootstrap with maximum fanout free cones (MFFC)
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Example High-Level Generated Code 21

… 
evalP2() 
  active[2] = false 
  C$old = C 
  C = A + B 
  active[3] |= C != C$old 
… 
eval() 
  … 
  if (active[2]) 
    evalP2() 
  … 

main() 
  for (max_cycles) 
    eval()
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