
Open source FPGA-based emulation with Nexus
Peter Birch - github.com/intuity/nexus - peter@intuity.io

1 Introduction
Simulation remains a powerful and intuitive way to ver-
ify a design, but its utility is often limited by how fast
it can execute. Verification on FPGA can be a much
faster option, but it comes at the cost of decreased de-
sign visibility, long re-spin times and nondeterministic
test results. Chip-scale emulation platforms such as Ca-
dence’s Palladium [1] or Synopsys’ ZeBu [2] are incredi-
bly capable, but not cost-effective for early stage research
and development or the verification of small designs. UC
Berkeley’s FireSim [3] is an open source option for cre-
ating repeatable simulation results on FPGA, but it is
still subject to a full synthesis and place-and-route flow
for every design change.

Nexus aims to be a hardware-accelerated emulation plat-
form for small designs at simulated clock rates approach-
ing 1 MHz. It is formed of a programmable systolic
array [4] with a custom compiler that converts a de-
sign into compatible instructions. With a fixed FPGA
bitstream the simulated design can be updated without
time-consuming place-and-route. This approach also al-
lows trace points to be added or removed during a simu-
lation by updating the program executing on the array.

This paper will discuss both parts of the platform and
how they enable simulation. It will detail how the hard-
ware has developed to increase the capacity and capabil-
ity to a useful point, and what the next steps are.

2 Parallel Simulation
Simulation of sequential logic can be an embarassingly
parallel problem. Each flip-flop and the cone of logic that
feeds it can be considered as an independent operation
evaluated once per cycle. Silicon’s physical properties
limit the complexity of a logic cone, providing an upper
bound on the size of an operation. The example shown in
Figure 1 shows how two such operations can be extracted
from a circuit.

In more realistic scenarios logic cones are unlikely to be
independent with common terms existing between oper-
ations, as with Figure 2. Such terms can either be eval-
uated once with the result shared between all dependent
operations, or can be separately evaluated as part of each
logic cone. The former approach limits the achievable

PARTITION A

PARTITION B

Figure 1: Independent Operations

parallelism as operations must wait until the common
term is evaluated (limiting simulation speed), while the
latter rapidly increases the required effort to compute
the next state (limiting system capacity).

PARTITION A

PARTITION B

Figure 2: Overlapping Operations

As a partition’s outputs change, input values to other
partitions must be updated. Ideally only sequential state
should be shared as it changes just once per cycle. Combi-
national signals can change multiple times, and if shared
between partitions this requires either intensive recompu-
tation of the receiver’s entire state, or resource intensive
suppression of steady states. Shared combinational state
also means a dependency, which can increase the critical
path length and reduce simulation speed.

Fortunately terms are generally re-used a small number
of times and state is pipelined, limiting the number of
partitions that share state. This would suggest that
‘grouping’ operations may be beneficial as it would al-
low state and common terms to be shared. However, the
group size must be balanced against the degree of paral-
lelism and so some terms may need to be replicated.

1



3 Nexus Hardware
Nexus is formed of a two dimensional mesh of nodes (Fig-
ure 3). This structure can be considered as a systolic
array, as each node evaluates a fraction of the design. A
distributed trigger signal begins evaluation of the next
state, with the next trigger only issued when all nodes
return to idle. The trigger is pipelined to ease timing,
while the idle signal is aggregated per column.

To Host

S

TRIG IDLE

TRIG IDLE

TRIG IDLE

TRIG IDLE

TRIG IDLE

TRIG IDLE

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

S

N

E W

E W E W

E W

S

N

S

N

N

From HostTrigger Idle

Figure 3: Block diagram of the mesh

Each node executes a series of instructions from RAM
to transform input state to output state. In FPGAs like
Xilinx’s Artix-7 series [5] block RAMs are relatively large
(4 kB) and abundant (365 in a XC7A200T), so can hold
a considerable number of operations.

N
E
S
W

N
E
S
W

AR
BI

TE
R

D
EC

O
D

ER

D
IS

TR
IB

U
TO

R

CORE

INST RAM

DATA RAM

TRIGGER IDLE

Figure 4: Block diagram of a node

Nodes can exchange messages with their neighbours to
the north (N), east (E), south (S), and west (W). Each
transfer carries the ID of the target node, the command,
and a payload. If a node receives a message targeting
a different node it will forward it, allowing for any-to-
any communication. To keep the mesh small this same
network is used to carry state updates, load program
data, and communicate with the host.

A node can digest or route one message per cycle. Round-
robin arbitration is used to fairly serve each ingress port.
If multiple ports present data at the same time those not
serviced are backpressured, which can limit the simula-
tion speed. Compiler optimisations can be used to reduce
the distance state updates travel through the mesh.

3.1 Proof-of-Concept
Nodes initially had just eight inputs, eight outputs, and
eight working registers (each one bit wide). Instructions
could perform a fixed number of one or two input oper-
ations (NOT, AND, OR, etc.) taking values from the
inputs or registers, and writing the result to the regis-
ters or outputs. A lookup table held in flops encoded
up to two messages per output, which could be directed
to a single recipient or broadcast across the mesh. A
tiny mesh of only thirty-six nodes (288 simulated flops)
could fit in an Xilinx XC7A200T, making this approach
unviable.

The proof-of-concept yielded two main results. Firstly,
broadcasting state updates consumed significant message
bandwidth and required dedicated hardware in both the
sender and receiver to update an input. Secondly, storing
output message configurations in flops rather than block
RAM caused excessive resource usage.

3.2 Increasing Capacity
The revised hardware had thirty-two inputs and outputs
and sixteen working registers per node (again one-bit
wide). Instructions were encoded as an eight bit truth
table (Figure 5) supporting up to three input operations,
allowing multiple gates to be evaluated in a single cycle.

A

A · B

A0 1 0 1 0 1 0 1

AB1 0 0 0 1 0 0 0

(A · B) + C ABC1 1 1 1 1 0 0 0

TABLE INPUTS

Figure 5: Truth Tables

Output messages were stored in RAM as a lookup ta-
ble, which could specify any number of messages to send.
This eliminated broadcast messages as state changes
could be sent to any number of nodes. Receive-side hard-
ware was simplified as the message identified the input
to update. This significantly reduced resource usage, al-
lowing one hundred nodes (up from thirty six) to fit in
the same FPGA with a capacity of 3,200 simulated flops.

However sequential state was still stored by a node’s in-
puts, with double-entry flops updating to the new value
on the trigger pulse. With inputs both holding state and
providing paths for nodes to share data, increasing de-
sign complexity led to extreme contention and only very
simple designs could be placed. Figure 6 illustrates how
a relatively simple design could exhaust an eight input
node by using output terms as part of the operation, and
this same issue extends to a thirty-two input node.

2



Figure 6: Exhaustion of Node Inputs

3.3 A Softer Approach

The latest hardware revision takes a different approach,
replacing the hardened input and output handling with
an expanded instruction set. There are seven eight-bit
wide general purpose registers, with an eighth register
accumulating results from truth table operations. STORE
and LOAD instructions allow data to be transferred to and
from a separate data memory, while SEND allows the con-
tents of a register to be sent to another node. State up-
dates arriving at a node are written directly into the data
memory, with the eight-bit ‘slot’ alternating on consec-
utive cycles to support sequential logic. These changes
drastically increase the capacity with a theoretical maxi-
mum of 16,384 flops per node, and can support any sen-
sible number of inputs and outputs.

In certain cases multiple pipeline stages can now be con-
tained within a node, which notably reduces messages
between nodes. Additionally, as significantly more state
can be held within a node the operation complexity it can
support also increases. This means that for most cases
only sequential state needs to pass between nodes, requir-
ing fewer messages to be sent and allowing the mesh to
reach a quiescent state without iteration.

The downside to this latest structure is that it results in
longer instruction loops per node, meaning slower sim-
ulated clock rates. However, the capacity benefits mas-
sively outweigh the loss in speed and the compiler can
split the design into more partitions to minimise the work
each node has to perform.

4 NXCompile
As Nexus’ hardware is fairly simple, it relies entirely on
the execution of instructions to achieve simulation. Map-
ping arbitrary logic onto the truth table instruction can
be thought of as a form of synthesis. However, the tool
must also handle register allocation and memory opera-
tions, which are standard operations for a compiler.

4.1 Ingestion & Optimisation
Yosys [6] is used to translate the design into a generic
technology mapped netlist, and exported to Verilog as a
series of simple assignments and clocked processes. Slang
[7] is then used to parse this netlist into a traversable data
structure.

The design is optimised to directly connect gates and
flops (eliminating intermediate wire assignments), to
propagate constant terms through gates (such as replac-
ing 𝐴 ⋅ 1 with just 𝐴), and to eliminate any logic from
the design not contributing to an output signal. For an
unoptimised netlist, these refinements have a significant
impact on the quality of the result achieved by the com-
piler and make the design easier to handle.

4.2 Partitioning
Partitioning happens in two stages. In the first stage,
each flop in the design and the cone of logic that feeds
it are placed into a ‘group’. A gate may appear in any
number of groups, while a flop appears in exactly one.
The number of gates determines each group’s complexity.

In the second stage, groups are distributed across par-
titions according to capacity constraints based on the
capabilities of a hardware node. The Kernighan-Lin min-
cut algorithm [8] is used to bisect each partition with a
low number of cross-connections. The net effect is to
locate related groups of logic in a single partition while
minimising the amount of shared state.

The first stage can introduce repeated computation of re-
sults that are shared between different logic cones. How-
ever, this cost is largely offset by placing related logic
into one partition. The combination of the two stages
attempts to achieve the balance described in section 2,
where repeated computation is undesirable except in sit-
uations where it aids parallelism.

4.3 Instruction Stream Generation
After partitioning, instructions are generated for each
node to compute and communicate state. The truth ta-
ble instruction takes up to three input terms, compress-
ing multiple gates into a single cycle. For example, if
𝐴, 𝐵 and 𝐶 are inputs and 𝐷 is 𝐵 ⊕ 𝐶 then 𝐴 ⋅ 𝐷 can
be expanded to 𝐴 ⋅ (𝐵 ⊕ 𝐶). This can be converted to
a truth table 0 0 0 0 0 1 1 0 and the result can be
determined by taking the bit at index {𝐴, 𝐵, 𝐶}.

One approach would be to walk backwards through a
flop’s logic cone aggregating three input terms. In prac-
tice this tends to produce a high number of three input
truth tables, but also leads to significant recomputation
of common terms. When trialed on PicoRV32 [9], this re-
sulted in a disappointing worse-case truth table to gates

3



ratio of 1.27:1, while a direct translation of gates to in-
structions would be 1:1.

A better approach would be to sort all gates in the parti-
tion by descending size of their fan-out. Terms can then
be accumulated in a similar fashion, but stopping when-
ever a previously constructed term is encountered. This
approach produces fewer three-input tables, and signifi-
cantly fewer instructions overall as more common terms
are shared. For PicoRV32, this gave a significantly im-
proved worse-case truth table to gates ratio of 0.79:1,
outperforming a direct translation.

The generated truth tables must be ordered to ensure
common results are available to dependent instructions.
As the hardware does not support conditional branching,
instructions will always execute in the same order and
this has some significant benefits.

One benefit is that register selection can easily reduce
spill cost (where register content is written to memory
[10]) by prioritising evictions of registers with no further
references or, if no such register exists, evicting the reg-
ister whose next reference is furthest away in the truth
table order. Only registers with novel state need to be
spilled during an eviction, others can be safely dropped.

Another benefit is that, through careful packing, related
state can be located in the same eight bit slot in RAM.
This significantly reduces the number of load instructions
required to execute the stream of truth tables compared
to random packing.

For PicoRV32, a complete partition state update yields
a worse-case instruction to gate ratio of 1.64:1 with an
average of 1.41:1. Future work will investigate how the
number of memory operations can be further reduced.

During communication, the sender will need to reshape
data to match the receiver’s memory packing. This
process requires significant data movement, which the
SHUFFLE and STORE instructions attempt to simplify.
The SHUFFLE instruction can rearrange the eight bits of
a register into any order in one cycle, while the STORE
instruction supports masking to only write selected bits.
Together they allow messages to be progressively accu-
mulated and transmitted once all results are computed.

Communication generation is still immature, so results
are not yet available. A reasonable assumption is that
the instruction to gate ratio will worsen, but the impact
can be minimised by interleaving the accumulation of
shared state with compute.

For PicoRV32, the predicted clock frequency is around
550 kHz (assuming an FPGA fabric clock of 250 MHz).
By comparison, single-threaded simulation on an Intel
i5-1038NG7 without wave tracing will achieve 36 kHz
under Icarus Verilog and 240 MHz under Verilator. Ver-

ilator’s impressive performance comes from years of op-
timisation and utilises the CPU’s much wider boolean
and arithmetic operations compared to Nexus’ bit-wise
approach. Similar optimisations could be made to Nexus
to substantially improve its performance.

5 Conclusion
This paper introduced Nexus’ hardware and compiler.
While immature, the latest architecture model promises
the capacity to run small, but non-trivial, designs such
as PicoRV32. The short term focus will be on complet-
ing the compiler to support simulation. In the longer
term Nexus could support dynamic interaction with a
host system, allowing software-based stimulus of the em-
ulated design and full-depth wave tracing.

References
[1] Cadence Design Systems, “Pal-

ladium Emulation Platform.”
www.cadence.com/en_US/home/tools/system-
design-and-verification/emulation-and-
prototyping/palladium.html

[2] Synopsys, “ZeBu Server ASIC Emulator.”
www.synopsys.com/verification/emulation/zebu-
server.html

[3] Berkeley Architecture Research, “FireSim.”
www.fires.im

[4] R. P. Brent and H. T. Kung, “Systolic VLSI ar-
rays for polynomial GCD computation,” IEEE
Transactions on Computers, vol. C–33, no. 8, pp.
731–736, 1984, doi: 10.1109/TC.1984.5009358.

[5] Advanced Micro Devices, “Artix-7 FPGA
Family.” www.xilinx.com/products/silicon-
devices/fpga/artix-7.html

[6] YosysHQ GmbH, “Yosys.” yosyshq.net

[7] M. Popoloski, “SystemVerilog Language Services.”
github.com/MikePopoloski/slang

[8] B. W. Kernighan and S. Lin, “An efficient
heuristic procedure for partitioning graphs,” The
Bell System Technical Journal, vol. 49, no.
2, pp. 291–307, 1970, doi: 10.1002/j.1538-
7305.1970.tb01770.x.

[9] YosysHQ GmbH, “PicoRV32 - A Size-Optimised
RISC-V CPU.” github.com/YosysHQ/picorv32

[10] G. J. Chaitin, M. A. Auslander, A. K. Chandra,
J. Cocke, M. E. Hopkins, and P. W. Markstein,
“Register allocation via coloring,” Computer Lan-
guages, vol. 6, no. 1, pp. 47–57, 1981, doi:
10.1016/0096-0551(81)90048-5.

4

https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.fires.im
https://doi.org/10.1109/TC.1984.5009358
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://yosyshq.net
https://github.com/MikePopoloski/slang
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://github.com/YosysHQ/picorv32
https://doi.org/10.1016/0096-0551(81)90048-5

	Introduction
	Parallel Simulation
	Nexus Hardware
	Proof-of-Concept
	Increasing Capacity
	A Softer Approach

	NXCompile
	Ingestion & Optimisation
	Partitioning
	Instruction Stream Generation

	Conclusion
	References

