
GreenRio: A Modern RISC-V Microprocessor
Completely Designed with A Open-source EDA

Flow
Yifei Zhu, Guohua Yin, Xinze Wang, Qiaowen Yang,

Zhengxuan Luan, Yihai Zhang, Mingzi Wang, Peichen Guo,
Xinlai Wan, Shenwei Hu, Dongyu Zhang, Yucheng Wang,

WeiWei Chen, Lei Ren, Zhangxi Tan
RIOS Lab, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University

yifei.z@rioslab.org

Abstract—The booming open-source EDA ecosystem brings
transparency and reproducibility to the VLSI field, lowering
the threshold for CPU design. However, the open design flow
is relatively new and, due to the nature of open source resources,
is accompanied by many hardships. This paper seeks to remedy
this and proposes a full-stack design methodology for modern
processors relying purely on open-source tools. To this end, the
paper describes our design process for GreenRio, a 64-bit, dual-
issue, out-of-order RISC-V microprocessor completely designed
with a open-source EDA flow. Based on our tape-out experiences
in the efabless Chipignite shuttle1 and OpenMPW programs,
we analyzed multiple open-source EDA tools used to develop
GreenRio and compared the open versions of these tools to
their proprietary versions. Furthermore, we also discussed their
current limitations as well as future possible optimizations. We
hope our methodology can bring a new perspective towards agile
modern architecture development.

Index Terms—OpenEDA, OpenLane, ASIC, RISC-V Processor,
Sail

I. INTRODUCTION

In recent years, we have witnessed increasing complexity
in IC designs of advanced processing technologies. The sky-
rocketing costs, difficulties, and risks of design have put silicon
implementations out of reach of system innovators. This crisis
of design and innovation has brought renewed attention to
the hardware design process itself [1]. Thus, it is becoming
more important to lower the threshold for CPU design and
enable agile development. In 2021, Edwards shared a tape-out
project using only OpenLane and OpenPDK [2], making open-
source chip manufacturing possible. Against this backdrop, an
end-to-end CPU design flow in a fully open-source manner is
becoming increasingly attractive.

Table 1 shows comparisons of features implemented by
GreenRio versus other famous designs submitted to OpenEda.
Compared to GreenRio, the other designs lack typical struc-
tural components of modern processors such as out-of-order
execution, renaming mechanisms, reorder buffers, etc. Con-
sidering the lack of implementation of these features in other
designs we believe that GreenRio has been one of the most
complex designs in the efabless silicon projects. It also has

1https://github.com/b224hisl/rioschip2

a high level of micro-architectural complexity, making it one
of the most advanced processors that openEDA has run so far
and will be a good reference point for future projects that wish
to use the open EDA flow.

In this paper, we use exclusively open-source resources to
construct a full-stack modern architecture design methodology.
We designed a seven-stage RISC-V core called “GreenRio”,
which supports dynamic branch prediction, out-of-order exe-
cution, and has a non-blocking data cache. Fig. 1 illustrates
the whole design flow.

The rest of the paper is organized as follows. Section 2
describes the frontend design of our core, including RTL im-
plementation and verification. Section 3 evaluates the backend
design with both open and proprietary EDA tools. Section 4
gives the outlook on future agile design with some improvment
schemes proposed. Section 5 summarizes the main conclusions
of this work.

II. FRONTEND DESIGN

The frontend design includes core specifications, RTL im-
plementaion and verification. Generally engineers simulate the
core’s functions in an RTL Simulator and have to verify the
sanity of the design. In this sections, we introduced tools
used in simulation and verification. And in order to test our
core throughly, a test generator designed by ourself was also
described.

A. System Verilog to Verilog

We choose to write our core in System Verilog (SV)
which is close to being completely supported by mainstream
dedicated EDA software. However, for most open-source tools
such as Yosys6 or Verilator, SV support is still limited. We
believe that syntax support for SV is essential as mainstream
IP is now more often than not written in SV than Verilog.
Currently, in order to quickly adapt to an open-source backend
flow, there is a strong need for automatic translation of
hardware programming language into Verilog. Otherwise RTL
has to be manually developed using Verilog or Chisel.

6https://github.com/YosysHQ/yosys



TABLE I
COMPARISON OF TYPICAL CORES COMPLETED BY OPENEDA

Picorv32a2 EH13 ibex4 biriscv5 GreenRio
ISA RV32 RV32 RV32 RV32 RV64

pipline stage 6 9 2 or 3 6 or 7 7
issue width single dual single dual dual

execution feature in-order in-order in-order in-order out-of-order
gate-count level (K) 17 10 20 67 53

Efabless tape-out Y N N Y Y

Fig. 1. Full-Stack Modern Processor Design Flow in Open-source Mode

We have explored two open-source tools for translating SV
to V: Surelog+UHDM7 and Sv2v8. Surelog has good syntax
parsing capabilities for SV. It does the transformation through
an intermediate UHDM-format file. However, the process
is very time-consuming and does not guarantee correctness
for some complex syntactic structures, such as ”enums” or
”breaks” in for-loops. And sv2v doesn’t have such problems.

Although there are reliable tools for the translation of SV
to Verilog there is still a lack of open-source tools for formal
verification between SV and V. These verification tools are
fundamental to the open ecological chain of chip design and
even proprietary tools like Cadence’s conformal are still not
perfect for a few syntax cases. We expect future open-source
EDA tools to be able to fill the gap.

B. Simulation and Lint

When developing a complex hardware structure, there are
two bottlenecks that greatly increase development time: syntax
checking and RTL simulation.

Verilator9 is an open-source Verilog HDL simulator that in-
stantiates a user’s top-level module. And Verilator is integrated
with a lint system [3] to check the codes for syntax errors.

After stimulis are fed into user-defined modules, Verilator
generates waveforms that can be visualized by Gtkwave. This
process is fast and allows multi-threaded acceleration.

However, the lint checker is not flexible enough to specify
some modules which are templated from FPGA constructors.
Its inapplicability adds inconvenience our design process.

7https://github.com/chipsalliance/UHDM-integration-tests
8https://github.com/zachjs/sv2v
9https://github.com/verilator/verilator

C. Verification

To achieve functional robustness, we have to run various
tests on the core. Meanwhile, we expect a golden model
to reflect correct architecture states in each CPU cycle for
reference.

Currently, there are multiple open-source verification re-
sources provided for RISC-V architectures. For example, the
RISC-V Tests repository10 has ISA coverage tests and typical
benchmarks. There is also the RISC-V Torture repository11

can be used to test more complex patterns.
However, due to the variable instruction parameters and

infinite instruction combinations, it is necessary to generate
a large number of tests that hit different edge cases in order
to verify the sanity of our design and iteratively refine the
model. For this purpose, we need an automatic test generator
to generate pseudorandom instruction streams to cover specific
edge cases. Google-dv12 is an example of a test generator with
such functionality. But it needs lots of prerequisites and has
poor support for Verilog.

We have developed an open-source random architectural test
generator called Talon 13 in order to meet our needs for a
controllable automatic test generator. Talon uses YAML for
user-controlled test parameters for readability and reusability
[4]. Furthermore, Talon is integrated with RISCOF14 for
further architectural testability.

10https://github.com/riscv-software-src/riscv-tests
11https://github.com/ucb-bar/riscv-torture
12https://github.com/google/riscv-dv
13https://gitlab.com/picorio/software/talon-opensource
14https://github.com/riscv-software-src/riscof



Fig. 2. COSIM Unit Test Environment integrated with Sail

Besides, to verify as much of the hardware functionality as
possible before fabricating the ASIC, co-simulation (COSIM)
tools provide project architects with a simulation environment
at a very high level of abstraction, manipulating simulated
hardware with software.

Following this trend, we built a co-simulation unit test
environment. We integrated Sail model into it, because the
reference model has to be golden enough for transaction-
based simulation. Sail is a Domain-Specific Language de-
signed for expressing the ISA semantics of distinct computer
architecture15. The RISC-V Sail model16 is the current golden
reference model for modern RISC-V computer architecture
ISA design. The model allows for more flexibility in ISA
extensions and provides a clear method to dump information
from its instruction stream. These features make Sail a more
suitable reference model for a core’s COSIM verification than
a more barebones model such as spike17.

We split the CPU into frontend and backend, and verified
them respectively by comparing the results generated by RTL
and Sail. Fig. 2 shows the COSIM environment.

III. BACKEND DESIGN

Regardless of implementation, the frontend is technology
independent. Once the frontend has been implemented, the
core is then hardened with a specific PDK. Backend design
includes logic synthesis, floorplan, layout, CTS, routing, static
timing analysis, etc. In this sections, we evaluated the backend
design with both open and proprietary EDA tools respectively
and proposed optimization points of open EDA tools.

A. OpenLane and OpenPDK

Shalan et al. [5] introduced OpenLane18, an automated RTL
to GDSII flow performing full ASIC implementation steps
from RTL down to GDSII. In July 2020, Google/Skywater
launched the OpenPDK project [6], which is available to the
public for use on custom silicon design. In a large-scale design,
external IPs are usually used to speed up the process. For
example, openRAM [7], an open-source memory IP, serves as
Icache and Dcache in our processor design.

Through running OpenLane, we concluded that an auto-
matic search of signoff parameters is a necessity. Openlane

15https://github.com/rems-project/sail
16https://github.com/riscv/sail-riscv
17https://github.com/riscv-software-src/riscv-isa-sim
18https://github.com/The-OpenROAD-Project/OpenLane

Fig. 3. Design layout

uses Tool Command Language (TCL) to configure various
parameters. The suitability of parameters, especially those
related to the floorplan and processes, is paramount to the
completion of the whole process. As improper settings will
cause early termination of the program. Therefore, to reduce
the time cycle of backend implementation, it is important to
design a configuration scheme based on automatic parameter
searching.

B. Comparison with Proprietary EDA Tools

In our work, we harden our 64-bit RISC-V CPU “GreenRio”
with both Openlane and proprietary EDA tools. Fig. 3 shows
layout images generated by open EDA(a) and proprietary EDA
flow(b). Specific statistical results are shown in Table II.

TABLE II
COMPARISON BETWEEN OPEN AND PROPRIETARY EDA TOOLS

Timing Corner: sky130 fd sc hd tt 025C 1v80
Timing Closure: No hold & setup violation
CPU cores for routing: 16vCPU

OpenLane proprietary EDA Gap
synthesis run Time 6m12s 4m04s 1.5X

gate count 53K 33K 1.6X
placement & routing time 1h58m 43m 2.7X

die area(mm2) 2.02 1.24 1.6X
leakage power 209nW 152nW 1.4X

placement density 32% 45% 1.4X
best clock period 80MHz 110MHz 1.4X

From the experimental results, we can generally con-
clude that open EDA tools have higher potential. Under
the same clock frequency, the area optimization performance
has reached 60% of that of proprietary ones. Furthermore,
improving the parallel computing capability can facilitate agile
and high-quality development of modern processors.

We also explore some other features for comparison. The
can be summarized as follows:

• SystemVerilog Syntax Support: OpenLane only sup-
ports Verilog. This is an issue due to the increasing
popularity of SV. Thus, the translation of SV to Verilog
is crucial.

• PnR Algorithm Optimization: Openlane’s PNR al-
gorithm should enhance its performance under higher
density. The current algorithm has difficulties passing



the routing congestion check once the density exceeds
40%. The correct parameter combination of floorplan,
placement, and routing needs several iterations of trial
and error, lengthening the development schedule.

• Logic Equivalence Check (LEC): Compared with the
proprietary tool Cadence Conformal, the open-source tool
does not always provide correct verification results.

• Antenna Violation Fixing: When comparing data be-
tween the two sets of EDA flows used to harden Green-
Rio, we can see that OpenLane has antenna violations
exceeding the number reported by proprietary tools. We
believe that improving the violation repair algorithm will
be of great benefit to reducing the difference in reported
violations between the two tools.

• PPA optimization: The PPA obtained by Openlane is still
lagging behind that provided by the proprietary EDA tool.
Under the same clock frequency, the area of optimization
performance for GreenRio hardened by OpenLane has
only reached 60% of that of proprietary EDA tools.

• Multi-thread Configuration: Only the routing stage has
multithreading support, resulting in a very slow flow.

• Tutorial and Documentation: The specification related
to the backend’s config file is brief and obscure leading it
to be hard to understand. We believe this is not conducive
to increasing the popularity of open-source tools.

IV. OUTLOOK ON AGILE DESIGN

For agile development in the IC field, it is important
to improve the intelligence of EDA tools, thereby further
increasing the degree of flow automation. It is also important
to learn from successful experiences of open-source projects in
the software industry and study the open-source design modes
and methods.

Compared with proprietary EDA softwares, open EDA has
excellent usability. We can see highlights of openEDA tools,
such as the high-speed simulation of Verilator with Gtkwave,
speeding up the frontend simulation; the great potential of Sail
in co-simulation verification; and the high-level automation
and availability integrated into OpenLane.

There are several key improvements to be considered for
future agile development:

• Cover more verification patterns with fewer test cases.
• Achieve more effective design explorations with right

hints.
• Build a smarter backend iteration system with the help

of Artificial Intelligence (AI).
The first improvement can be achieved through the devel-

opment of a constrained random instruction that uses specific
mathematical algorithms. The last two improvements can be
achieved through the use of AI, which has found success in
many fields and can be used in designing PPA optimization.
Feedback from the backend can be used to help iterate during
frontend module development. Ziegler [8] has introduced
SyntunSys, which has been used to deal with the problem
of design space parameter search in industrial VLSI. Google

has built a parameter tuning tool called Vizier19 which has
been used in OpenLane’s parameter tuning [9]. With so many
tools being developed a modern processor designed in an open-
source manner with full-stack optimization will eventually be
achieved.

V. CONCLUSION

In this work, we have used an open-source toolchain to
complete design stages of a modern processor, GreenRio.
GreenRio is one of the most complex processors that openEDA
has run so far making it a good design to use to look
at comparisons between open-source toolchains versus their
proprietary versions.

In summary, the open-source flow’s support and acceleration
for some specific computational tasks can be further optimized.
In addition, the lack of a unified process standard has led to
relatively large differences in the quality of open-source IPs,
leading to low reusability. If more advanced process design
kits can be combined, the open-source mode can be adapted
to a wider range of scenarios.

The ecology of open-source silicon has developed rapidly.
Both the efabless shuttle20 and the open EDA tools reduce
the cost of silicon production and shorten the iterative loss
during scientific inquiry. The boom in open EDA tools also
has pedagogical implications, lowering the threshold for CPU
design and bridging the knowledge gap between classroom
and industry.

VI. ACKNOWLEDGMENT
We would like to express our deepest appreciation to Johan

Euphrosine of Google for his patient guidance in this project.

REFERENCES

[1] A. B. Kahng, ”Open-Source EDA: If We Build It, Who Will
Come?,” 2020 IFIP/IEEE 28th International Conference on Very Large
Scale Integration (VLSI-SOC), 2020, pp. 1-6, doi: 10.1109/VLSI-
SOC46417.2020.9344073.

[2] R. T. Edwards, M. Shalan and M. Kassem, ”Real Silicon Using Open-
Source EDA,” in IEEE Design & Test, vol. 38, no. 2, pp. 38-44, April
2021, doi: 10.1109/MDAT.2021.3050000.

[3] Snyder W. Verilator: Open simulation-growing up[J]. DVClub Bristol,
2013.

[4] Y. F. Zhu, X. Wang, ”RISC-V Vector Sail Model and Test Generation”
in Vector & Machine Learning

[5] M. Shalan and T. Edwards, ”Building OpenLANE: A 130nm
OpenROAD-based Tapeout-Proven Flow : Invited Paper,” 2020
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD), 2020, pp. 1-6.

[6] Google/Skywater-pdk: https://github.com/google/skywater-pdk
[7] M. R. Guthaus, J. E. Stine, S. Ataei, Brian Chen, Bin Wu and M. Sarwar,

”OpenRAM: An open-source memory compiler,” 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016,
pp. 1-6, doi: 10.1145/2966986.2980098.

[8] Matthew M. Ziegler, Jihye Kwon, Hung-Yi Liu and Luca P. Carloni.
2021. Online and Offline Machine Learning for Industrial Design Flow
Tuning: (Invited - ICCAD Special Session Paper). In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE
Press, 1–9. https://doi.org/10.1109/ICCAD51958.2021.9643577

[9] Golovin D, Solnik B, Moitra S, et al. Google vizier: A service for
black-box optimization[C]//Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining. 2017:
1487-1495.

19https://github.com/google/vizier
20https://github.com/efabless/caravel user project


