
A Java Backend for ESSENT
Augie Eriksson and Maanuj Vora

Department of Electrical Engineering and Computer Science
University of California, Berkeley

{raeriksson, maanujvora}@berkeley.edu

Fig. 1: Types of hardware simulators

Abstract—We propose a new open-source RTL simulator that
achieves faster compilation and startup speed compared to
compiled simulators, such as Verilator, but also achieves higher
simulation performance than interpreted simulators, such as
treadle [1]. We build on the work in ESSENT [2], an optimizing
open-source FIRRTL simulator, which has an existing C++
backend, and extend it with a new Java backend. We take
advantage of fast Java bytecode compilation and the JVM’s JIT
compilation to simultaneously deliver fast simulator startup time
and high simulation throughput.

I. INTRODUCTION

RTL simulators fall in one of two categories (see Figure 1):
1) Compiled simulators: RTL is turned into an optimized

C++ model, and gcc is invoked to compile the model to a
binary. Examples include Verilator, VCS, and ESSENT.

2) Interpreted simulators: RTL is parsed into an in-memory
model. The simulator runtime interprets that model.
Examples include treadle (an interpreted FIRRTL simu-
lator) and Icarus Verilog.

We build our hybrid approach on the ESSENT FIRRTL
simulator. ESSENT ingests FIRRTL and partitions the RTL
into subgraphs that are executed only when their inputs
change. ESSENT emits C++ code and invokes gcc to compile
the code to a simulation binary, similar to Verilator.

Invoking gcc for compilation and linking introduces a
significant startup overhead. To mitigate this, we designed
a Java code emitter for ESSENT, which reuses ESSENT’s
optimization passes. To run an RTL testbench, we load the
compiled class files into a JVM and invoke a test written in
Java.

II. BENCHMARKS

We evaluated four simulators: Verilator, treadle, ESSENT
(with default C++ and custom Java backends). On these
simulators, we evaluated four designs with corresponding test
benches: a GCD module, the bit-serial RISC-V core Serv [3],
a TileLink RAM, and the riscv-mini 3-stage RISC-V core [4].

Java ESSENT C++ ESSENT Verilator treadle

CG Comp CG Comp CG Comp

GCD 1.3 0.3 1.4 0.4 1.5 1.1 1.1
TL RAM 2.1 0.6 2.3 0.8 2.4 1.5 1.9
SERV 1.9 0.5 2.2 0.7 2.1 1.6 1.7
riscv-mini 2.7 0.6 3.0 1.6 2.9 2.7 2.5

TABLE I: Compilation times (in seconds). CG = code generation
time, Comp = compilation time

Java ESSENT C++ ESSENT Verilator treadle

GCD 0.4 0.1 0.1 9.8
TL RAM 4.5 0.4 0.4 100
SERV 0.8 0.4 0.3 29
riscv-mini 0.4 0.02 0.01 12

TABLE II: Simulation times (in seconds)
A. Compilation Performance

We benchmark the startup latencies in Table I. For the com-
piled simulators, we measure code generation time (compiling
FIRRTL into intermediate code (C++ / Java)), and compilation
time (compiling intermediate code into a runnable binary or
bytecode). For the interpreted simulator, we measure the time
to load a FIRRTL file and be ready to run testbench code.

Java ESSENT is faster to spin up than the other compiled
simulators, and achieves similar startup time to treadle.
B. Simulation Performance

We also benchmark the testbench execution times (Table
II). Java ESSENT achieves simulation performance compara-
ble to other compiled simulators, while having a low startup
time.1

III. CONCLUSION

Java ESSENT delivers the “best of both worlds” for short
to medium length tests on moderately sized designs. This is
achieved by utilizing the Java Compiler for fast compilation
and the Java JIT for optimized execution. We are optimizing
to increase simulation speed, and adding VCD dumping and
chiseltest integration.

Find our open source repository here (https://github.com/
ekiwi/essent/tree/java-backend).

REFERENCES

[1] C. Markley, https://github.com/chipsalliance/treadle
[2] S. Beamer and D. Donofrio, “Efficiently Exploiting Low Activity Factors

to Accelerate RTL Simulation,” DAC 2020.
[3] O. Kindgren, https://github.com/olofk/serv
[4] D. Kim, https://github.com/ucb-bar/riscv-mini

1The slower execution in TL RAM and riscv-mini are due to inefficiencies
in wide signal operations that will be optimized in the future.

https://github.com/ekiwi/essent/tree/java-backend
https://github.com/ekiwi/essent/tree/java-backend
https://github.com/chipsalliance/treadle
https://github.com/olofk/serv
https://github.com/ucb-bar/riscv-mini

	Introduction
	Benchmarks
	Compilation Performance
	Simulation Performance

	Conclusion
	References

