
Java Backend for ESSENT
Augie Eriksson, Maanuj Vora

What is Chisel? — Overview

● Hardware Construction Language Embedded in Scala

● Allows you to write a Scala program that generates the description of a
synchronous digital circuit

● Chisel is commonly compiled into FIRRTL (Flexible Internal Representation
for RTL) or Verilog for simulation

What is Chisel? — Basics

class Inverter extends Module {
 val in = IO(Input(Bool()))
 val out = IO(Output(Bool()))
 val hold = IO(Input(Bool()))

 val delay = Reg(Bool())
 when(!hold) {
 delay := !in
 }
 out := delay
}

signal type

signal direction

signal is a port

Chisel module

register with undefined reset value

condition
assign next state

assign output

What is Chisel? — FIRRTL

circuit Inverter :
 module Inverter :
 input clock : Clock
 input reset : UInt<1>
 input in : UInt<1>
 output out : UInt<1>
 input hold : UInt<1>

 reg delay : UInt<1>, clock with :
 reset => (UInt<1>("h0"), delay)
 node _T = eq(hold, UInt<1>("h0"))
 when _T :
 node _delay_T = eq(in, UInt<1>("h0"))
 delay <= _delay_T
 out <= delay

Simulating Circuits

What is circuit simulation?

Software replication of behavior of an actual electronic circuit

Simulations are:
● Cheap
● Fairly Accurate
● Can be slow

Fabrication is expensive and slow — must simulate as much as possible

Simulating Chisel Circuits

 val dut = EssentTester(firrtlSource)

 dut.poke("in", 1)
 dut.poke("hold", 0)

 dut.step()

 assert(dut.peek("out") == 0)

Methods of Circuit Simulation

Methods of Circuit Simulation

What is ESSENT?

ESSENT is an existing compiled simulator for FIRRTL

Similar to Verilator — takes in FIRRTL instead of Verilog

ESSENT assumes that not all circuit components will change
each cycle

FIRRTL

ESSENT

C++ Code

ESSENT

Execute Binary

gcc

Hybrid Approach: Java Backend

Idea: Take advantage of existing Java Virtual Machine
● Testbench already runs on the JVM
● ESSENT would emit Java code instead of C++

Potential Benefits:
● Faster simulation speed than Treadle
● Faster compilation speed than Verilator
● Hot spots in simulation can be just-in-time compiled

FIRRTL

Java ESSENT

Java Code

Java ESSENT

Compile and
Simulate

 val dut = EssentTester(source)

 dut.poke("in", 1)
 dut.poke("hold", 0)

 dut.step()

 assert(dut.peek("out") == 0)

Hybrid Approach: Java Backend

FIRRTL

Java ESSENT

Java Code

Java Class
Loader

javac

Java
Bytecode

Java Object

Hidden
to User

Challenges Faced

Signals wider than 64 bits

● currently using immutable BigInteger class
● working on replacement due to memory inefficiencies

Use of Java primitives (boolean and long)

● takes better advantage of built-in javac optimizations
● less overhead than using objects (BigInteger)

Benchmarking Methodology

Testbenches:
● GCD
● RISCV-Mini
● TileLink Ram
● Serv

Simulators:
● Java ESSENT
● C++ ESSENT
● Verilator
● Treadle

Measured:
● Code Gen (FIRRTL → C++/Java, N/A for Treadle)
● Compilation (C++/Java → Binary/Bytecode, or startup time)
● Simulation (time during actual circuit simulation)

Compilation Performance Comparison

Simulation Performance Comparison

Aggregate Performance Comparison

Future Work

Better (longer) benchmarks

Faster simulation speed

VCD Dumping

chiseltest integration

Java ESSENT

● New open-source RTL simulator

● Outperforms interpreted simulators and
has a low start-up time

● Future backend for chiseltest library

● Best suited for medium-sized circuits
running on medium-length testbenches

GitHub:
https://github.com/ekiwi/essent/tree/java-backend

Augie Eriksson
<raeriksson@berkeley.edu>

Maanuj Vora
<maanujvora@berkeley.edu>

https://github.com/ekiwi/essent/tree/java-backend

