
Morpher: An Open-Source Integrated Compilation
and Simulation Framework for CGRA

Dhananjaya Wijerathne1, Zhaoying Li1, Manupa Karunaratne2, Li-Shiuan Peh1, Tulika Mitra1

1School of Computing, National University of Singapore, 2Advanced Micro Devices, Inc
1{dmd, zhaoying, peh, tulika}@comp.nus.edu.sg, 2Manupa.Karunaratne@amd.com

Abstract—This paper presents Morpher, an open-source end-
to-end compilation and simulation framework, to assist design
space exploration and application-level developments of CGRA-
based systems. Morpher can take an application with a compute-
intensive kernel as input, compile the kernel onto a user-provided
CGRA architecture, and automatically validate the compiled ker-
nels through cycle-accurate simulation using test data extracted
from the application. Morpher can handle real-world application
kernels without being limited to simple toy kernels through its
feature-rich compiler. Morpher architecture description language
lets users easily specify architectural features such as complex
interconnects, multi-hop routing, and memory organizations. In
the experimental study, we evaluate Morpher against the state-
of-the-art and demonstrate Morpher’s ability to provide end-to-
end compilation, simulation, and validation. Morpher is available
online at https://github.com/ecolab-nus/morpher.

I. INTRODUCTION

Coarse-Grained Reconfigurable Arrays (CGRAs) have
emerged as promising reconfigurable accelerators, offering
superior power efficiency compared to the FPGAs by main-
taining reconfigurability at the word/instruction level. CGRAs
appear commercially in Samsung Exynos 7420 SoC [1], Intel
Configurable Spatial Accelerator [2], Sambanova RDU [3],
Renesas Configurable Processor [4], and academic ones like
HyCUBE [5], [6] among others. The simplest CGRA archi-
tecture has a set of processing elements (PE) interconnected
in a grid [7]. Each PE comprises a register file, ALU, and
a control memory to store instructions that are executed in a
time-multiplexed nature. CGRAs are statically scheduled; thus,
they do not need hardware structures for conflict resolution
and synchronization, which makes them lightweight. In recent
years, various CGRA architectures [5], [8]–[10] have been
proposed with performance-enhancing features.

The recent success of the FPGAs can be primarily attributed
to the quality design tools such as Vivado for high-level
synthesis and open-source VTR [11] for FPGA architecture
exploration and CAD research. In contrast, open-source CGRA
design and exploration tools are in their infancy. Table I lists
differentiating features of existing open-source CGRA design
frameworks [12]–[15]. CGRA-ME [12] is a compilation and
RTL generation framework for classic CGRA architectures.
However, it only supports simple kernels without control di-
vergence (if-then-else constructs) within the loop body and has

M. Karunaratne was with National University of Singapore when this
research was conducted. D. Wijerathne, Zhaoying Li, and M. Karunaratne
have contributed equally to this work.

TABLE I
COMPARISON WITH OPEN-SOURCE CGRA DESIGN FRAMEWORKS

Features C
G

R
A

-M
E

Pi
lla

rs

O
pe

nC
G

R
A

C
C

F

M
or

ph
er

DFG Generation Models control divergence ✗ ✗ ✓ ✓ ✓
Recurrence edges ✗ ✗ ✓ ✓ ✓

Architecture Modeling Adapt user defined architectures ✓ ✓ ✓ ✗ ✓
Multi-hop connections ✗ ✗ ✗ ✗ ✓
Different memory organizations ✗ ✗ ✓ ✗ ✓

P&R Mapper Architecture adaptive mapping ✓ ✓ ✗ ✗ ✓
Data layout aware mapping ✗ ✗ ✗ ✗ ✓
Recurrence aware mapping ✗ ✗ ✓ ✓ ✓

Simulation & validation Cycle accurate simulation ✗ ✓ ✓ ✓ ✓
Test data generation ✗ ✗ ✗ ✗ ✓
Validation against test data ✗ ✗ ✗ ✗ ✓

limited support for loops with recurrence edges (inter-iteration
dependencies). Most loop kernels on real-world applications
that could be accelerated on a CGRA have some form of
conditional inside the loop body [16], [17]. Additionally,
conditional instructions are inserted into the loop body by
loop flattening; an important optimization used to reduce
the invocation overhead of nested loops [18]. Therefore, the
CGRA-ME framework’s applicability in practical applications
is constrained by its limited support for control divergence and
recurrence edges. Additionally, CGRA-ME avoids memory
modeling and covers only the basic architectural features of the
CGRA PE array. Furthermore, no open-source tool is available
for simulating the compilation result of CGRA-ME.

A design space exploration framework for CGRA called Pil-
lars [13] supports automatic RTL code generation and cycle-
accurate simulation based on scala-based architectural descrip-
tion language. However, as Pillars employs the CGRA-ME
framework for front-end compilation, it also suffers from most
of the drawbacks of CGRA-ME. The two other prominent
CGRA frameworks, OpenCGRA [14] and CCF [15] support
kernels with control divergence and recurrence edges. How-
ever, their mappers are not architecture adaptive, necessitating
code-level modifications to target new CGRA architectures.
Except for CGRA-ME, all other tools support cycle-accurate
simulation, but only with the user’s assistance in creating
separate test benches with test data. None supports automatic
test data generation or validation of CGRA execution against
test data extracted from the application.

We propose Morpher, an open-source, fully automated end-
to-end CGRA compilation and simulation framework, to real-
ize fully functional CGRA designs. Morpher supports kernels
with control divergence and recurrence edges allowing the user

https://github.com/ecolab-nus/morpher

FPGA
Emulation

Basic Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter &

auto generator
Application

source code
with annotated

kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

Fig. 1. Overview of Morpher Framework

to compile real application kernels without being restricted
to simple kernels. It allows users to define complex CGRA
architectures with various memory organizations and intercon-
nects through a flexible architecture specification language.
Morpher can compile complex kernels more quickly thanks to
efficient mapping algorithms. Furthermore, Morpher validates
the compilation result by running simulations with test data
automatically extracted from the target application.

II. MORPHER

A. Overview

Fig. 1 illustrates the overall Morpher framework, including
its current status and future development plan. The shaded
portions represent implemented functionality, whereas un-
shaded portions represent upcoming planned integration. The
pieces of the framework are numbered for easy reference.
The framework has two inputs: application source code with
annotated kernel 1 , and the abstract architecture model 4 .
The main components of the framework are Data-Flow Graph
(DFG) generation 2 , test data generation 3 , CGRA Mapper
5 , and C++ Simulator 6 .

CGRAs target loop kernels where the application spends a
significant fraction of the execution time. The DFG generator
is an LLVM-based pass that extracts the DFG of the target
loop annotated in the application source code. Additionally,
it constructs the multi-bank data layout by allocating kernel
variables onto the memories of the target CGRA. The test
data generator creates the data required for simulation and
verification.

The CGRA mapper maps the extracted DFG onto the CGRA
fabric to maximize parallelism by exploiting intra- and inter-
iteration parallelism with software pipelining (i.e., modulo
scheduling) [19]. Morpher supports a rich set of primitive
constructs that not only model functional units and register
files but also complex software-defined routers and multi-
banked memories accessible via shared bus interfaces. The ar-
chitecture is modeled as a time-extended resource graph called
Modulo Routing Resource Graph (MRRG) [20], [21]where
the nodes of the DFG are mapped to the time-space resource
instances to maximize throughput. The resultant mapping
configuration file describes the configuration for each resource
cycle-by-cycle. Finally, the simulator uses the mapping con-
figurations and the test data to simulate the execution of the
application on the specified architecture.

Unshaded portions in Fig. 1 are from Pillars framework [13],
which we intend to integrate into Morpher. We believe this

REG0

REG1

DP0

RF0

WI

EI

WO

EO

PE

T

I1

I2

P

WP RP

FU0

"PE":{
"INPUTS" : [“WI",“EI"] ,
"OUTPUTS" : ["WO","EO"] ,
"SUBMODS" : {

"FU":[{"name":"FU0"}], "RF":[{"name":"RF0"}]},
"CONNECTIONS" : {

"THIS.EI" : ["FU0.I1","FU0.I2","FU0.P“, "RF0.WP”],
"THIS.WI" : ["FU0.I1","FU0.I2","FU0.P“, "RF0.WP"],
"RF0.RP0" : ["FU0.I1","FU0.I2","FU0.P","THIS.EO","THIS.WO"],
"FU0.T" : ["RF0.WP","THIS.EO","THIS.WO"]

}
},

Ports Connections Modules

Fig. 2. An example of two input two output Processing Element model written
in Morpher ADL. The definition of internal connections of primitive (RF, FU)
modules are not shown.

integration will work well because while Pillars offers a full
hardware-centric feature set such as automatic RTL generation,
Verilator-based simulation, and FPGA emulation, Morpher
offers a comprehensive front-end compiler toolchain.

B. DFG and Data Layout Generation

CGRA designs employ a variety of execution paradigms
(control flow handling techniques, address generation mod-
els, memory models), and the compiler should generate a
DFG to fit into the execution paradigm of the target CGRA.
Morpher DFG generator currently supports DFG generation
for multiple execution paradigms, including different control
flow handling techniques (partial predication, full predication,
dual-issue [16]), load-store address generation models (on
array address generation, decoupled access execute/stream
dataflow [22]), and memory models (memory-mapped slave).

Morpher creates the multi-bank data layout by allocating
the live-in/live-out variables (scalar and arrays) in the memory
banks. It currently supports simple data placement policies
to distribute data uniformly on multiple banks based on data
size or the number of variables. The base addresses of array
variables and addresses of scalar variables are recorded in the
data layout file. The address information is also embedded in
the corresponding DFG nodes as constants.

C. Abstract Architecture Specifications

Morpher abstract architecture description language (ADL)
is designed for flexibility to cover diverse CGRA architectures.
It comprises three main components: Modules, Ports, and
Connections. Modules model hardware blocks such as PEs,
RFs, ALUs, LSUs, and Memories. Ports establish connections
between modules that carry data between producers and con-
sumers. Connections describe the connectivity among ports.
Fig. 2 shows an example of a processing element with a FU,
RF with two registers, two inputs, and two outputs modeled
in Morpher ADL.

Generally, CGRAs have a hierarchical module structure;
thus, a module could contain a list of sub-modules. There are
three primitive modules in Morpher ADL, Functional Units
(FU), Register Files (RFs), and Memory Units (MU) which
could collectively model any number of custom modules as
required. Multiplexers are inferred through the connections
rather than being explicitly modeled.

FU can model hardware ALUs (Arithmetic logic unit)
and LSUs (Load store unit). FU is composed of an internal
structure called Data Path (DP), a list of supported operations,

and operation latency. DP eventually gets mapped with a DFG
node. RF models register files with a configurable number of
registers and read/write ports. RF is composed of an internal
structure called REGs that models registers. REGs could also
be used to model scattered registers inside any module. MU
models memories in detail: bank sizes (bit width and depth),
number of read/write ports and allocated variables.

Morpher ADL provides a special syntactic sugar to auto-
matically connect the PEs and MUs according to a given
interconnection pattern eliminating the need for the user to
specify all connections between PEs/MUs to populate CGRA.

D. CGRA Mapper

The CGRA Mapper takes the DFG and the abstract architec-
ture description file and generates mapping configurations. Ini-
tiation Interval (II), the cycle difference between the initiation
of two consecutive loop iterations, determines the throughput
of the kernel. Therefore the goal of the mapper is to generate
a mapping with the lowest possible II. The lower bound of
II, i.e., Minimum II (MII), is derived based on the CGRA
resource availability and the recurrence dependencies in the
kernel [19]. The mapper attempts to map the loop starting
with II set to MII and iteratively increments II by one until a
feasible schedule is obtained.

Initially, Morpher analyses the connectivity between MUs
and FUs. MUs are already allocated with the variables. There-
fore some variables could only be accessed by some FUs.
All FUs are then annotated with accessible variable names
(as possible candidates for memory operation placements).
Thereafter it sorts the nodes of the DFG in a topological
ordering to create a scheduling list. The subsets of nodes that
belong to recurrence cycles are prioritized according to the
size of the cycle [23]. Each node of the scheduling list is
mapped to a space-time instance of the supported FU node of
MRRG such that it utilizes the ports that result in the least
accumulated cost when routing data from the parent nodes of
the current mapping node. We employ Dijkstra’s shortest path
algorithm in establishing such routes and allow the ports to be
over-subscribed if necessary.

Morpher iteratively resolves over-subscriptions after ob-
taining the initial mapping. Morpher currently supports three
approaches to resolve over subscriptions: adaptive-heuristic-
based approach inspired by SPR [24], Simulated Annealing
(SA) based approach [25], and learning-induced approach
(LISA [26]). In the heuristic-based approach, the cost of
the over-subscribed ports is increased for the next mapping
iterations. When the mapping converges, the resources with
the most demand are more likely to be used for mapping the
dependencies with fewer options for routing compared to the
competitors. In SA based approach, the node placement is
changed based on an SA-based cooling schedule. With LISA,
the node placement is guided by labels inferred from a trained
Graph Neural Network (GNN) model. We deem the mapping a
success where none of the resources are over-subscribed. Note
that our modular code base makes it easy for researchers to
add their mapping methods to the Morpher toolchain. In the

future, we plan to incorporate hierarchical mapping approaches
for better scalability [27]–[29] and include automated design
space exploration of heterogeneous CGRA architectures [30].

E. Test Data Generation

Morpher automatically instruments, i.e., inserts data record-
ing functions, to the application C source code. The recording
functions can capture live-in and live-out variables of the
target loop kernel. These recording functions are automatically
inserted into the basic blocks that enter and exit the target
loop kernel. The instrumented C program is then executed
in a general purpose processor to record the live-in/live-
out variables as test data. These test data are passed to the
simulator, which uses live-in variables as initial data and the
live-out variables as the expected result for verification.

F. Simulation and Verification

Morpher simulator is a model of the CGRA composed
of functional units, registers, multiplexers, and memories.
Currently, the Morpher simulator only models the variations of
HyCUBE CGRA architecture [5], [6]. The CGRA model acts
as a memory-mapped slave device to a host processor. First,
the live-in variables recorded from the test data generator are
loaded for each memory unit. Then the simulator executes
operations mapped on the FUs, multiplexes the data, and
writes the data to registers on a cycle basis following the
mapping configurations. The post-simulation memory content
is validated against the expected results. Once integrated with
the Pillars framework, Morpher would be able to support RTL
generation and FPGA emulation in addition to architecture
adaptive simulation.

G. Open-source Artifact

Morpher open-source artifact contains the entire framework
built in C++. Morpher is available online at https://github.com/
ecolab-nus/morpher. A single python script invokes the tool,
and multiple verified test cases are provided for reference.
Furthermore, the open-source repository contains Continuous
Integration (CI) workflows for automatically running func-
tional tests in each code update to assure error-free code.

III. EXPERIMENTAL STUDY

This study aims to demonstrate key features of the Morpher
framework: 1) Quality and faster compilation, 2) the ability to
map real applications kernels with automated verification, and
3) the ability to model diverse CGRA architectures.

A. Mapping Quality and Compilation time

We compare Morpher’s mapping results (II and compila-
tion time) with those of CGRA-ME, the only open-source
framework available for architecture-adaptive compilation. We
map the kernels from polybench benchmark suite [32] to a
4x4 CGRA with 2-D mesh interconnection topology. Each
PE has RFs of 4 registers, and all PEs have access to the
memory. For a fair comparison, both tools take similar DFGs
as input. Table III shows the results. All three mapping
methods (heuristic, SA, and LISA) in Morpher achieve the
minimum possible II for all the DFGs, while CGRA-ME failed

https://github.com/ecolab-nus/morpher
https://github.com/ecolab-nus/morpher

TABLE II
A SUMMARY OF 4X4 CGRA ARCHITECTURE EXPLORATION CASE STUDIES CONDUCTED USING MORPHER

adpcm aes gemm nt disparity dct texture syn fft nw gsm
MII 7 10 6 3 9 3 4 15 6

Architecture Casestudies II Compile
Time (m) II Compile

Time (m) II Compile
Time (m) II Compile

Time (m) II Compile
Time (m) II Compile

Time (m) II Compile
Time (m) II Compile

Time (m) II Compile
Time (m)

Generic CGRA [31] 17 323 24 410 14 87 26 380 23 367 12 135 11 467 19 37 10 409
ALU-Independent Routing [8], [10] 9 14 19 79 11 9 15 43 18 22 5 1 5 16 19 3 8 88
Multi-Hop Routing [5] 2-Hops 9 8 15 17 9 5 12 1 14 12 5 2 5 2 15 2 8 96

3-Hops 9 4 13 5 8 3 10 2 13 8 5 2 5 10 15 3 7 39
4-Hops 8 1 13 3 7 2 11 0.3 13 4 6 12 5 10 15 2 10 175

Multi-Hop Scattered Registers 4-Hops 8 1 12 2 7 2 11 0.3 13 3 6 10 5 7 15 2 7 18

TABLE III
MAPPING QUALITY AND COMPILATION TIME COMPARISON

Benchmark DFG Nodes MII Achieved II Compilation time (s)
CGRA-ME Morpher CGRA-ME Morpher

2mm 21 2 2 2 96 13
atax 18 2 2 2 79 19
bicg 28 2 5 2 1540 125
cholesky 14 1 1 1 14 13
doitgen 26 2 3 2 264 14
gemm 23 2 3 2 280 10
gemver 26 2 3 2 404 22
gesummv 30 2 5 2 1115 54
mvt 18 2 2 2 81 10
symm 22 2 2 2 95 10
syrk 18 2 2 2 109 11
trmm 22 2 2 2 109 11
Average 22.17 1.92 2.67 1.92 348.83 26

to do so for five kernels. Furthermore, the Morpher LISA
mapping approach [26] is the fastest, compiling 13.3x faster
than CGRA-ME on average.

B. Accelerating real applications on CGRA

This study demonstrates how Morpher can be used to
accelerate real applications on CGRA-based systems. It also
highlights the importance of supporting control divergence
and recurrence edges. The target application, Microspeech
(wake-word detection), selected from the tinyML benchmark
suite [33], uses deep neural network (DNN). The target CGRA
is 4x4 HyCUBE with a partial predication-based execution
model [5]. Microspeech application consists of a neural net-
work with a CONV and fully connected layers. The CONV
layer is accelerated on HyCUBE by lowering it to the GEMM
kernel [34]. Two variations of the GEMM kernel, unrolled
(GEMM-U) and unrolled-flattened (GEMM-U-F), are shown
in Listing 1.

Table IV shows the total execution time of the CONV layer
with those GEMM versions. GEMM-U kernel reduces the
compute time by nearly half compared to the original GEMM
kernel due to high MAC utilization in unrolled mapping. The
flattened kernel does not have invocation overheads present
in the other two kernels [18]. Therefore, GEMM-U-F offers
the best total execution time compared to other kernels. Note
that loop flattening removes the inner loops by introducing
conditional statements inside the loop body. It also adds a
longer recurrence edge to the loop body [18]. The Morpher
successfully compiles the kernels because it handles control
divergence and recurrence edges. Furthermore, it automatically
verifies the compiled kernels by running simulations using pre-
processed audio data extracted from the application.

C. Modeling complex CGRAs

We evaluated the various features that are modeled by
Morpher using a 4x4 CGRA instance, as summarized in
Table II.

TABLE IV
EXECUTION TIME COMPARISON OF MICROSPEECH CONV LAYER ON 4X4

HYCUBE CGRA

Kernel Nodes II (MII) Compute
time (ms)

Data transfer
time (ms)

Total execution
time (ms)*

GEMM 26 4 (4) 2.70 3.39 6.09
GEMM-U 58 6 (4) 1.17 3.39 4.56
GEMM-U-F 79 8 (8) 1.31 1.79 3.10
* Execution times are calculated at 488 MHz CGRA frequency and 50 MBps host to

CGRA data transfer rate. The execution time is the elapsed time between the host CPU
invoking the CONV layer and the results being written back into the host memory.

1 for (i=0;i<R1; i++)
2 for (j=0;j<C2; j++)
3 for (k=0;k<C1; k=k+4): //map this (GEMM-U)
4 O[i][j] += W[i][k]* I[k][j]+ W[i][k+1]* I[k+1][j]
5 + W[i][k+2]* I[k+2][j]+W[i][k+3]* I[k+3][j];
6

7 for (n=0;n<R1*C2*C1; n++){: //map this (GEMM-U-F)
8 O[i][j] += W[i][k]* I[k][j]+ W[i][k+1]* I[k+1][j]
9 + W[i][k+2]* I[k+2][j]+W[i][k+3]* I[k+3][j];k+=4;

10 if(k+1>=C1) {k=0; ++j;} if(j==C2) {j=0; ++i;}}

Listing 1. Two versions of GEMM kernel

We describe a set of architectures in the first column that
introduce richer interconnection resources to the baseline (e.g.,
introducing switches, multi-hop links, etc). The trend shows
that Morpher utilizes such resources to improve II towards MII
while reducing compilation time. Note that MII is independent
of interconnection resources and is only dependent on the
kernel and PE array size. ALU-independent routing architec-
tures [8], [10] use configurable switches to perform data rout-
ing as opposed to generic CGRA, which routes data through
ALU [31]. It can bring about 66% throughput improvement.
Furthermore, single-cycle multi-hop connections [5] allows
71% throughput improvement (at 4-hop point). Using scattered
registers in the wires (also known as pipeline registers) instead
of register files can give a clear area and power advantage.
Compilation results show they provide nearly identical perfor-
mance (with a similar number of registers), highlighting the
benefit of employing scattered registers.

IV. CONCLUSION

Morpher presents a unified compiler and simulation frame-
work. Morpher has the ability to model modern CGRA ar-
chitectures, map complex workloads with a higher mapping
quality at a shorter compilation time, and automatically verify
the mapping results through cycle-accurate simulation.

V. ACKNOWLEDGMENT

This work was partially supported by the National Research
Foundation, Singapore under its Competitive Research Pro-
gramme Award NRF-CRP23-2019-0003 and Singapore Min-
istry of Education Academic Research Fund T1 251RES1905.

REFERENCES

[1] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “Ulp-
srp: Ultra low-power samsung reconfigurable processor for biomedical
applications,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 7, no. 3, pp. 1–15, 2014.

[2] K. E. Fleming, K. D. Glossop, S. C. Steely Jr, J. Tang, A. G. Gara
et al., “Processors, methods, and systems with a configurable spatial
accelerator,” Feb. 11 2020, uS Patent 10,558,575.

[3] M. Emani, V. Vishwanath, C. Adams, M. E. Papka, R. Stevens, L. Flo-
rescu, S. Jairath, W. Liu, T. Nama, and A. Sujeeth, “Accelerating scien-
tific applications with sambanova reconfigurable dataflow architecture,”
Computing in Science & Engineering, vol. 23, no. 2, pp. 114–119, 2021.

[4] “Renesas Configurable Processor.” [Online]. Available: https://www.
renesas.com/sg/en

[5] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,” in
Proceedings of the 54th Annual Design Automation Conference 2017,
2017, pp. 1–6.

[6] B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and L.-S. Peh,
“HyCUBE: A 0.9 V 26.4 MOPS/mW, 290 pJ/op, Power Efficient
Accelerator for IoT Applications,” in 2019 IEEE Asian Solid-State
Circuits Conference (A-SSCC). IEEE, 2019, pp. 133–136.

[7] Z. Li, D. Wijerathne, and T. Mitra, “Coarse Grained Reconfigurable
Array CGRA,” Book Chapter in Springer Handbook of Computer
Architecture 2022.

[8] N. Farahini, S. Li, M. A. Tajammul, M. A. Shami, G. Chen, A. He-
mani, and W. Ye, “39.9 gops/watt multi-mode CGRA accelerator for a
multi-standard basestation,” in 2013 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2013, pp. 1448–1451.

[9] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 389–402.

[10] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, no. 5, pp. 38–51, 2012.

[11] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson, “The VTR project: architecture
and CAD for FPGAs from verilog to routing,” in Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate
Arrays, 2012, pp. 77–86.

[12] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-
Azumi, and J. Anderson, “CGRA-ME: A unified framework for CGRA
modelling and exploration,” in 2017 IEEE 28th International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2017, pp. 184–189.

[13] Y. Guo and G. Luo, “Pillars: An Integrated CGRA Design Framework,”
in Third Workshop on Open-Source EDA Technology (WOSET), 2020.

[14] C. Tan, N. B. Agostini, J. Zhang, M. Minutoli, V. G. Castellana, C. Xie,
T. Geng, A. Li, K. Barker, and A. Tumeo, “OpenCGRA: Democratizing
Coarse-Grained Reconfigurable Arrays,” in 2021 IEEE 32nd Interna-
tional Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE, 2021, pp. 149–155.

[15] S. Dave and A. Shrivastava, “Ccf: A CGRA compilation framework,”
2017.

[16] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Branch-aware loop map-
ping on CGRAs,” in Proceedings of the 51st Annual Design Automation
Conference, 2014, pp. 1–6.

[17] M. Karunaratne, D. Wijerathne, T. Mitra, and L.-S. Peh, “4D-CGRA:
Introducing branch dimension to spatio-temporal application mapping on
CGRAs,” in 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

[18] J. Lee, S. Seo, H. Lee, and H. U. Sim, “Flattening-based mapping
of imperfect loop nests for CGRAs,” in Proceedings of the 2014
International Conference on Hardware/Software Codesign and System
Synthesis, 2014, pp. 1–10.

[19] B. R. Rau, “Iterative modulo scheduling,” International Journal of
Parallel Programming, vol. 24, no. 1, pp. 3–64, 1996.

[20] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwere-
ins, “DRESC: A retargetable compiler for coarse-grained reconfig-
urable architectures,” in 2002 IEEE International Conference on Field-

Programmable Technology, 2002.(FPT). Proceedings. IEEE, 2002, pp.
166–173.

[21] L. Chen and T. Mitra, “Graph minor approach for application mapping
on CGRAs,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 7, no. 3, pp. 1–25, 2014.

[22] D. Wijerathne, Z. Li, M. Karunarathne, A. Pathania, and T. Mitra,
“CASCADE: High throughput data streaming via decoupled access-
execute CGRA,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, pp. 1–26, 2019.

[23] T. Oh, B. Egger, H. Park, and S. Mahlke, “Recurrence cycle aware
modulo scheduling for coarse-grained reconfigurable architectures,” in
Proceedings of the 2009 ACM SIGPLAN/SIGBED conference on Lan-
guages, compilers, and tools for embedded systems, 2009, pp. 21–30.

[24] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling,
and S. Hauck, “SPR: an architecture-adaptive CGRA mapping tool,”
in Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays, 2009, pp. 191–200.

[25] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[26] Z. Li, D. Wu, D. Wijerathne, and T. Mitra, “LISA: Graph Neural
Network based Portable Mapping on Spatial Accelerators,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2022, pp. 444–459.

[27] D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, “HiMap:
Fast and scalable high-quality mapping on CGRA via hierarchical
abstraction,” in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2021, pp. 1192–1197.

[28] D. Wijerathne, Z. Li, T. K. Bandara, and T. Mitra, “PANORAMA:
Divide-and-Conquer Approach for Mapping Complex Loop Kernels
on CGRA,” in Proceedings of the 59th Annual Design Automation
Conference 2022, 2022, pp. 1–6.

[29] Z. Li, D. Wijerathne, X. Chen, A. Pathania, and T. Mitra, “ChordMap:
Automated Mapping of Streaming Applications onto CGRA,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2021.

[30] K. B. Thilini, D. Wijerathne, T. Mitra, and L.-S. Peh, “REVAMP:
A Systematic Framework for Heterogeneous CGRA Realization,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2022.

[31] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” in International Conference on
Field Programmable Logic and Applications. Springer, 2003, pp. 61–
70.

[32] J. Karimov, T. Rabl, and V. Markl, “Polybench: The first benchmark for
polystores,” in Technology Conference on Performance Evaluation and
Benchmarking. Springer, 2018, pp. 24–41.

[33] P. Warden and D. Situnayake, TinyML. O’Reilly Media, Incorporated,
2019.

[34] A. Anderson, A. Vasudevan, C. Keane, and D. Gregg, “High-
performance low-memory lowering: GEMM-based algorithms for DNN
convolution,” in 2020 IEEE 32nd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). IEEE,
2020, pp. 99–106.

https://www.renesas.com/sg/en
https://www.renesas.com/sg/en

	Introduction
	Morpher
	Overview
	DFG and Data Layout Generation
	Abstract Architecture Specifications
	CGRA Mapper
	Test Data Generation
	Simulation and Verification
	Open-source Artifact

	Experimental Study
	Mapping Quality and Compilation time
	Accelerating real applications on CGRA
	Modeling complex CGRAs

	Conclusion
	Acknowledgment
	References

