
Morpher: An Open-Source Integrated Compilation
and Simulation Framework for CGRA

Dhananjaya Wijerathne*, Zhaoying Li *, Manupa Karunaratneꝉ, Li-Shiuan Peh *, Tulika Mitra *

School of Computing, National University of Singapore*, Advanced Micro Devices, Incꝉ

{dmd, zhaoying, peh, tulika}@comp.nus.edu.sg, Manupa.Karunaratne@amd.com

CGRA: Coarse Grained Reconfigurable Array

• Power-efficient reconfigurable
accelerator
• Word level reconfigurable

• Simple hardware architecture
• Array of Processing Elements (PE) inter-

connected through a reconfigurable network

• Each PE has ALU, register file, multiplexers
and configuration memory

• Fully software controlled
• Compiler statically generates the

configurations

• Commercially available

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

D
A

T
A

 M
E

M
O

R
Y

N

E

W

S

Config. Memory

RF

M
u

x

M
u

x

N

E

W

S
`

ALU

R

R

CGRA Architecture

2

NUS HyCUBE

[DAC ’17, A-SSCC’ 19]
Renessas DRP

[VLSI ‘ 18]

Samsung

Reconfigurable

Processor

[FPT ‘12]

Sambanova Plasticine

[ISCA’17]

Application mapping on CGRA

• Target: a loop kernel from applications
• Mapping the dataflow graph (DFG) of the loop body on to the CGRA

• Placement: assigning DFG operations to ALUs

• Routing: mapping data signals using wires and registers

F1 F2

F3 F4

F1
F3 F4

F2

F1
F3 F4

F2

F1
F3 F4

F2

N1

N2
N3

N4

DFG

2x2 CGRA

N1

N2 N3

N4

Spatio-temporal mapping

Loop kernel c code Dataflow graph (DFG) of the loop body

3

Placement and routing

N1

N3

Application mapping on CGRA

• Software pipelined schedule
• Goal: Mapping with minimum

initiation interval
• Initiation interval (II) = cycle

difference between initiation of
consecutive iterations

• Low II -> High performance
High performance mapping with

II = 1 cycles

F1
F3 F4

F2

F1
F3 F4

F2

F1
F3 F4

F2

F1
F3 F4

F2

N1

N2 N3

N4

F1
F3 F4

F2

N1

N2 N3

N4

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5 N1

Iteration 1 Iteration 2 Iteration 3

F1
F3 F4

F2

F1
F3 F4

F2

F1
F3 F4

F2

F1
F3 F4

F2

N1

N2
N3

N4

F1
F3 F4

F2

N1

N2
N3

N4

N1

N2
N3

N4

Low performance mapping with
II = 2 cycles

II
 =

 2 II
 =

 1

4

Motivation for Morpher

• CGRA has become popular due to its excellent balance between performance,
power efficiency and flexibility

• Researchers are exploring the design space to find a better mix of performance,
power efficiency, and flexibility targeting diverse workloads
• Large architecture design space

• Workloads have complex kernels

• CGRA design frameworks that can only map simple kernels on a fixed
architecture are not suitable for CGRA design space exploration

• Functional verification is important to validate the correctness

5

• Not end-to-end
• No open-source DFG generators (Pillars)

• No open-source simulators (CGRA-ME)

• No open-source architecture adaptive compiler (OpenCGRA, CCF)

• Cannot support diverse CGRA architectures:
• Does not support architecture adaptive compilation (Open-CGRA, CCF)

• Only covers basic architectural features in PE array (CGRA-ME)

• Cannot support complex kernels
• Does not support kernels with control divergence and loops with recurrence

edges (CGRA-ME, Pillars)

• Need to manually create test benches and test data for each
application kernel

Features CGRA-ME Pillars Open-

CGRA

CCF

DFG Generation Models control divergence ✗ ✗ ✓ ✓

Recurrence edges ✗ ✗ ✓ ✓

Architecture Modelling

Adapt user defined architectures ✓ ✓ ✓ ✗

Multi-hop connections ✗ ✗ ✗ ✗

Different memory organizations ✗ ✗ ✓ ✗

P&R Mapper

Architecture adaptive mapping ✓ ✓ ✗ ✗

Data layout aware mapping ✗ ✗ ✗ ✗

Recurrence aware mapping ✗ ✗ ✓ ✓

Simulation & validation

Cycle accurate simulation ✗ ✓ ✓ ✓

Test data generation ✗ ✗ ✗ ✗

Validation against test data ✗ ✗ ✗ ✗

What is missing?

6

Morpher: An Integrated Compilation and
Simulation Framework for CGRA
• Fully automated end-to-end CGRA compilation and

simulation framework
• Flexible architecture specification language

• Allows the user to define complex CGRA architectures

• Supports kernels with control divergence and recurrence
edges
• Allows compiling complex application kernels

• Efficient mapping algorithms
• Higher mapping quality at shorter compilation time

• Cycle-accurate simulation to validate the compilation results
• Automatically extract the test data from the target application

• Fully open-source with easily modifiable modular code base:
• https://github.com/ecolab-nus/morpher

Features CGRA-ME Pillars Open-CGRA CCF Morpher

DFG Generation
Models control divergence ✗ ✗ ✓ ✓ ✓

Recurrence edges ✗ ✗ ✓ ✓ ✓

Architecture Modelling

Adapt user defined architectures ✓ ✓ ✓ ✗ ✓

Multi-hop connections ✗ ✗ ✗ ✗ ✓

Different memory organizations ✗ ✗ ✓ ✗ ✓

P&R Mapper

Architecture adaptive mapping ✓ ✓ ✗ ✗ ✓

Data layout aware mapping ✗ ✗ ✗ ✗ ✓

Recurrence aware mapping ✗ ✗ ✓ ✓ ✓

Simulation & validation

Cycle accurate simulation ✗ ✓ ✓ ✓ ✓

Test data generation ✗ ✗ ✗ ✗ ✓

Validation against test data ✗ ✗ ✗ ✗ ✓

7

https://github.com/ecolab-nus/morpher

Overview

FPGA
Emulation

Basic
Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter, auto

generator

Scala-based
Architecture
Description

Application
source code

with annotated
kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

Target loop

8

Overview

FPGA
Emulation

Basic
Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter, auto

generator

Scala-based
Architecture
Description

Application
source code

with annotated
kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

9

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

D
A

T
A

M
E

M
O

R
Y

Config. Memory

RF

S
w

itc
h

N

E

W

S

S
w

itc
h

N

E

W

S
`

ALU
R

R

D
A

T
A

M
E

M
O

R
Y

Morphe Architecture Description Language (ADL)

Overview

FPGA
Emulation

Basic
Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter, auto

generator

Scala-based
Architecture
Description

Application
source code

with annotated
kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

10

Overview

FPGA
Emulation

Basic
Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter, auto

generator

Scala-based
Architecture
Description

Application
source code

with annotated
kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

C

A

B

11

Overview

FPGA
Emulation

Basic
Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter, auto

generator

Scala-based
Architecture
Description

Application
source code

with annotated
kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

12

Overview

FPGA
Emulation

Basic
Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter, auto

generator

Scala-based
Architecture
Description

Application
source code

with annotated
kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

13

Overview

FPGA
Emulation

Basic
Modules
(Chisel)

Verilog RTL

Verilator
(Simulation)

Architecture
interpreter, auto

generator

Scala-based
Architecture
Description

Application
source code

with annotated
kernel

1

DFG
Generation
2

Data
Generation
3

Dataflow
Graph

SPM Data
Layout

Test data

Abstract
Architecture Model
4

CGRA
Mapper

5

Mapping
Configurations

C++
Simulation
6

14

DFG and Data Layout Generation

• DFG generation: supports DFG generation for multiple execution
paradigms
• Control-flow handling techniques

• Partial predication, Full predication, Dual-issue

• Load store address generation techniques
• On array address generation, decoupled access/execute address generation

• Memory models
• Memory-mapped, tightly coupled

• Data layout generation: creates multi-bank data layout by allocating
live-in/live-out variables (scalar and arrays) in the CGRA data memory
• Supports simple data placement policies

15

Abstract Architecture Specifications

• Morpher abstract Architecture Description Language (ADL) is designed
to cover diverse CGRA architectures

• Three main components
• Modules: Represent hardware blocks (PEs, RFs, ALUs, LSUs, and Memories)

• Primitive modules:

• Functional Units (FU)

• Register Files (RF)

• Memory Units (MU)

• Ports: Entry and exit points of the modules that carry data

• Connections: Describe the connectivity among ports

• Multiplexers are automatically inferred through the connections

16

Abstract Architecture Specifications

• Morpher abstract Architecture Description Language (ADL) is designed
to cover diverse CGRA architectures

REG0

REG1

DP0

RF0

WI

EI

WO

EO

PE

T

I1

I2

P

WP RP

FU0

"PE":{
"INPUTS" : [“WI",“EI"] ,
"OUTPUTS" : ["WO","EO"] ,
"SUBMODS" : {

"FU":[{"name":"FU0"}], "RF":[{"name":"RF0"}]},
"CONNECTIONS" : {

"THIS.EI" : ["FU0.I1","FU0.I2","FU0.P“, "RF0.WP”],
"THIS.WI" : ["FU0.I1","FU0.I2","FU0.P“, "RF0.WP"],
"RF0.RP0" : ["FU0.I1","FU0.I2","FU0.P","THIS.EO","THIS.WO"],
"FU0.T" : ["RF0.WP","THIS.EO","THIS.WO"]

}
},

Ports Connections Modules

17

PE described in Morpher ADL

Abstract Architecture Specifications

• Morpher ADL provides a special syntax to connect the PEs to a
given interconnection pattern automatically
• Eliminates the need for the user to specify all the connections

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Syntax for the “GRID” Pattern
(https://github.com/ecolab-nus/morpher/Morpher_CGRA_Mapper/json_arch/stdnoc.json)

PEs connected in a 2-D “GRID” Pattern

18

CGRA Mapper

• Mapper generates the configurations of hardware elements
(ALU, Mux, RF read/write)
• Goal of the mapper is to generate a mapping with the lowest possible II

(Minimum II)

• Algorithm:
• Minimum II is calculated

• based on the CGRA array size, number of DFG nodes, and the recurrence
dependencies in the kernel

• Create Modulo Routing Resource Graph (MRRG) with MII

• Create the initial mapping allowing resource overuse:
• Create a scheduling list: sort the nodes of the DFG in a topological ordering

• Map each DFG node to a MRRG node with the least accumulated routing cost

• Iteratively resolves the resource overuse

• Increase II and redo the mapping till a feasible schedule is
obtained

F1 F2

F3 F4

F1
F3 F4

F2

F1
F3 F4

F2

F1
F3 F4

F2

N1

N2
N3

N4

DFG

2x2 CGRA

N1

N2 N3

N4

Spatio-temporal mapping

19

CGRA Mapper

• Morpher currently supports three approaches to resolve resource overuse
• Adaptive-heuristic-based approach inspired by SPR

• Cost of the over-subscribed ports is increased for the next mapping iterations

• Resources with more demand would be available for routing the dependencies with fewer options

• Simulated Annealing (SA) based approach

• Node placement is changed based on an SA-based cooling schedule

• Learning-induced (LISA) approach [1]

• Node placement is guided by labels inferred from a trained Graph Neural Network (GNN) model

• Our modular code base allows researchers to add their mapping methods
• In the future, we plan to incorporate hierarchical mapping approaches for better scalability [2, 3]

[1] Z. Li, D. Wu, D. Wijerathne, and T. Mitra, “LISA: Graph Neural Network based Portable Mapping on Spatial Accelerators,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA)
[2] D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, “HiMap: Fast and scalable high-quality mapping on CGRA via hierarchical abstraction,” in 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE).
[3] D. Wijerathne, Z. Li, T. K. Bandara, and T. Mitra, “PANORAMA: Divide-and-Conquer Approach for Mapping Complex Loop Kernels on CGRA,”
in Proceedings of the 59th Annual Design Automation Conference 2022

20

Test Data Generation

• Instrument, i.e., insert data recording functions to the C source code to
capture live-in and live-out variables of the target kernel

• Instrumented C program is executed in a general-purpose processor
to record the live-in/live-out variables as test data

• Simulator uses the test data
• Live-in values as initial data

• Live-out variables as the expected result

Target loop

Live-out variable recording

functions

Live-in variable recording

functions

21

Simulation and Verification

• Morpher Simulator is a model of the CGRA composed of Fus, registers,
multiplexers, and memories

• Currently Morpher simulator only models the variations of HyCUBE
CGRA architecture

• CGRA model acts as a memory-mapped slave device to a host
processor
• The live-in variables are loaded for each memory unit

• Simulator executes operations mapped on FUs, multiplexes the data, and writes data
to registers/memories on a cycle basis according to the mapping configurations

• Post-simulation memory content is validated against the expected results

22

Open-source Artifact Demonstration

23

Experimental Study

1. Mapping quality and compilation time
2. Map real applications kernels with automated verification
3. The ability to model diverse CGRA architectures

24

Mapping Quality and Compilation Time

• Comparison with CGRA-ME, the only
open-source framework available for
architecture-adaptive compilation

• Target architecture: 4x4 CGRA
• Interconnected in N2N connections

• Each PE has RF with four registers

• Kernels: Polybench benchmark suite
• Results:

• Morpher achieves the minimum possible II for
all kernels, while CGRA-ME failed to do so for
five kernels.

• Morpher LISA mapping is 13.3x faster than
CGRA-ME on average.

Quality of Mapping (min II/ Achieved II)

Compilation Time (s)

25

Accelerating Real Applications on CGRA

Microspeech application

• This study demonstrates
• How Morpher can be used to accelerate real application kernels on

CGRA-based systems

• The importance of supporting control divergence and recurrence
edges

• Target CGRA: 4x4 HyCUBE with a partial predication-
based execution model

• Target application: Microspeech (wake-word detection)
from tinyML benchmark suite
• Target kernel: Convolution layer

HyCUBE CGRA

26

Accelerating Real Applications on CGRA

• This study demonstrates
• How Morpher can be used to accelerate real application kernels on

CGRA-based systems

• The importance of supporting control divergence and recurrence
edges

• Target CGRA: 4x4 HyCUBE with a partial predication-
based execution model

• Target application: Microspeech (wake-word detection)
from tinyML benchmark suite
• Target kernel: Convolution layer

• Convolution layer is lowered to GEMM kernel

27

Accelerating Real Applications on CGRA

Kernel Nodes II (MII) Compute

time (ms)

Data

transfer

time (ms)

Total

execution

time (ms)

GEMM 26 4 (4) 2.70 3.39 6.09

GEMM-U 58 6 (4) 1.17 3.39 4.56

GEMM-U-F 79 8 (8) 1.31 1.79 3.10

• We consider three variations of the GEMM kernel
• GEMM

• GEMM-U: unrolled four times

• GEMM-U-F: unrolled and flattened

• Flattening introduces conditional statements inside the loop body and adds a long
recurrence edge

• Flattened kernel does not have invocation overheads

• Results:
• Morpher can successfully compile all three kernels

• GEMM-U kernel reduces the compute time by nearly half
compared to the GEMM

• GEMM-U-F offers the best total execution time

• Automatically verifies the compiled kernels by
running simulations using pre-processed
audio data extracted from the application

GEMM kernels

Execution time

CI workflow for microspeech kernels 28

Modelling Complex CGRAs

adpcm aes dct fft gsm

MII 7 10 9 4 6

Architecture case studies II Compile

Time (m)

II Compile

Time (m)

II Compile

Time (m)

II Compile

Time (m)

II Compile

Time (m)

Generic CGRA 17 323 24 410 23 367 11 467 10 409

ALU-Independent Routing 9 14 19 79 15 22 5 16 8 88

Multi-hop Routing 2-Hops 9 8 15 17 12 12 5 2 8 96

3-Hops 9 4 13 5 10 8 5 10 7 39

4-Hops 8 1 13 3 11 4 5 10 10 175

Multi-Hop Scattered

Registers

4-Hops 8 1 12 2 11 3 5 7 7 18

29

Conclusion

• Morpher CGRA compilation and simulation framework
• Flexible to model modern CGRA architectures

• Map complex workloads with a higher mapping quality at a shorter compilation
time

• Automatically validate the correctness of the mapping results through cycle-
accurate simulation

• Fully open-source
• Modular codebase

• Easy to modify

• Open source repository:
• https://github.com/ecolab-nus/morpher

30

https://github.com/ecolab-nus/morpher

Thank you!

