From Chisel to Chips with Open-Source Tools

Martin Schoeberl and Luca Pezzarossa
Department of Applied Mathematics and Computer Science
Technical University of Denmark
Kgs. Lyngby, Denmark
Email: [masca,lpez] @dtu.dk

Abstract—Chisel and Verilator provide an open-source stack
for digital design. For ASIC synthesis, we have open-source tools
like OpenROAD, Yosys, and Magic. OpenROAD is a project to
deliver an end-to-end silicon compiler in open source. The aim
is to “democratize hardware design” by providing an automated
layout generation flow from a design in RTL to GDS files used
to produce silicon. Google and Efabless offer free production
of chips in a multi-project wafer if the project is available in
open source. In this paper, we report our experience in using the
open-source tool flow from Chisel to chips with two designs: a
small processor using only on-chip resources and a RISC-style
processor, called Patmos, with extra external main memory. We
have successfully taped out the Patmos processor for the multi-
project waver MPW?7 from Efabless.

Index Terms—open-source hardware, open-source digital de-
sign tools.

I. INTRODUCTION

Open-source software has fueled the development of all
aspects of applications and tools. Compilers for all mainstream
languages are available in open source. Linux, the leading open-
source operating system, powers servers, personal computers,
mobile phones, and embedded systems. Web applications’ front-
end and back-end can be built with open-source tools and
libraries. We can browse the web with an open-source browser.

However, in the hardware domain, the situation is very
different. Proprietary tools still dominate the design and testing
of digital systems. Although we have free tools for FPGA
development, we cannot “tinker” with those tools or enhance
them by building on top of them. However, for academic
research, we would like to have open-source designs [9] and
tools available to build upon.

Closed-source compilers also contain the risk that they can
introduce spyware into the compiled code. We can also consider
synthesis tools as compilers, which compile from VDHL or
Verilog to a netlist. It is also imaginable that a malicious
synthesis tool introduces a backdoor, e.g., into a chip for a
network switch. That issue of a possible backdoor might also
be one reason why DARPA initiated the “Intelligent Design
of Electronic Assets” program. Furthermore, the program
shall enable a no-human-in-the-loop translation from a design
described in source code to a final physical layout.

In this paper, we explore the use of the open-source tool flow
for chip design. Furthermore, we aim to tapeout two designs:
(1) the simple processor Leros [11] using only on-chip memory
and (2) the more complex processor Patmos [12] with external
memory. The second design was carried out with a group of

students during a special course at the Technical University of
Denmark.

Our background is in digital design and using FPGAs to
verify those designs. We have no background in backend
development of ASICs and were hoping that the tool flow
has been automated enough so we can handle the full design
flow. This paper reports on the experiences during those two
approaches.

II. OPEN-SOURCE TOOLS

For our projects, we are using open-source tools only, as
the title states: from the design in the Chisel language down
to GDS files for production. This section gives an overview of
the tools we used.

A. Chisel

Chisel is a modern hardware construction language [2], [8].
It is embedded in the general-purpose programming language
Scala. Chisel is a domain-specific language, where the domain
is the description of digital circuits. We describe hardware in
Chisel at the register transfer level. However, the real power
of Chisel comes from being embedded in Scala. We can
express flexible hardware generators with Scala as an object-
oriented and functional language. Functionality expressed in
scripting languages such as Perl, TCL, and Python to generate
a customizable design in VHDL or Verilog is now possible in
the very same language used to describe the hardware.

Chisel is embedded into Scala and executes on the Java vir-
tual machine (JVM). Therefore, it has excellent interoperability
with the large pool of existing Scala and Java libraries for
design and verification. We can co-simulate a Chisel design
with a reference model written in Scala or Java, e.g., using
the ChiselVerify project for verification [10], [4]. Furthermore,
many modern IDEs, such as IntelliJ IDEA or Visual Studio
Code, support Scala and, therefore, Chisel. Autocompletion,
exploring the source of the Chisel library, and therefore having
the ScalaDoc documentation available is a convenience that
software developers are used to but new for classic hardware
developers.

Furthermore, we can piggyback on the available infrastruc-
ture to distribute open-source libraries. The Maven packet
system! is a popular software and package management tool.
Maven Central? is one of the largest repository hosting software

"https://maven.apache.org/
Zhttps://mvnrepository.com/repos/central

https://maven.apache.org/
https://mvnrepository.com/repos/central

libraries. We can publish hardware components on Maven like
any other open-source Java library. Publishing on Maven means
that a third-party component can be integrated into the compile
flow with a single reference in the build.sbt configuration. We
consider that the distribution model of intellectual properties
(IP)s as JVM libraries from a Maven server has the potential
for a small revolution in design reuse in digital design. No
more need to manually copy sources from external servers
with the danger that the sources get out of synchronization.
Running tests on the Java virtual machine allows using
reference models of the hardware design written in Java, Scala,
and even in C (via the Java native interface) for co-simulation.
For example, in the Leros project, we implemented a reference
model as an instruction set simulator in Scala. We execute
all self-testing programs on the hardware implementation and
the software simulation. In the future, we plan to perform a
co-simulation of Leros hardware and software implementation.

B. Synthesis

We may want to add features to existing synthesis tools
to develop new synthesis algorithms or write algorithms to
generate coarse-grain cell libraries. However, no such synthesis
tool existed in open-source. Therefore, Clifford Wolf developed
the Yosys Open SYnthesis Suite (Yosys) as part of his Bachelor
thesis at the Vienna University of Technology [16]. The focus
of Yosys is on high-level digital synthesis. Yosys uses the open-
source logic synthesis tool ABC for gate-level optimizations.

ABC [3] is an open-source tool for logic synthesis and formal
verification of synchronous digital circuits. ABC supports as
input only structural Verilog, which means only the following
language constructs are allowed: constant values, wire and
port declaration, static assignments, and cell instantiation. We
can use Yosys to convert full-featured synthesizable Verilog to
structural Verilog. Magic [7] is integrated with ABC. It supports
multiple clock domains and more complex components like
memories and DSP modules.

C. Simulation

Chisel comes with its own simulator, called Treadle, which
can simulate a design in the intermediate representation of
FIRRTL. The Chisel simulation is driven by ChiselTest [6], an
extension of the Scala test framework ScalaTest. For Verilog,
two open-source simulators are available: Verilator and Icarus
Verilog.

Verilator [13], [14] is a Verilog simulator that compiles
Verilog code to C++ and then to a native binary. Verilator
supports synchronous designs only. Therefore, it can deliver
faster simulation than event-driven simulators. Verilator claims
to have similar or higher performance than the “Big 3~
simulators on a single thread. Icarus Verilog [15] is a simulator
for Verilog. It compiles circuits described in Verilog (IEEE-
1364) into an intermediate format that can then be executed.
Icarus Verilog is an event-driven simulator.

We use all three simulators in our design flow. For smaller
unit tests and testing the smaller processor Leros, we use
Chisel test. For a full system test of Patmos, we use Verilator,

Chl§el Chisel libraries
design Scala libraries
sources
Scala compiler

Scala class

Chisel compiler

Design sources

T

Htal

D Process Design Kit
+ B

- 1
RTL synthesis Floorplanning Antenna diode
. (Yosys + ABC) insertion
Synthesis (Custom Scripts)
exploration
4+ Static Logic
timing analysis Clock three equivalence check
(OpenSTA) synthesis (Yosys)
—
Design for test k] Detailed routing
Design (Fault) & (TritonRoute)
explo‘[at|on | §' Global routing

OpenLane v
Manufacturing-ready
design files

Fig. 1. An overview of OpenLane together with the Chisel tool flow.

with a C-based emulation of external devices, such as external
main memory. For the final tests within Caravel, we use Icarus
Verilog.

D. Open-Source Tool Flows

Figure 1 shows the complete OpenLane [5] toolchain
used to synthesize behavioral hardware design using the
foundry Process Design Kit (PDK) resources. It includes
OpenROAD [1] which is an end-to-end open-source silicon
compiler providing automated layout generation flow from a
design in RTL (Verilog) to GDS files used to produce silicon.

E. Production Services

Google, together with Efabless,? offers free production of
chips in a multi-project wafer if the project is available in
open-source. In each multi-project waver run, 42 designs are
combined on one wafer. If the design is open-source, the
production is free of charge and includes five test PCBs
with mounted chips. Currently, 130 nm is the only available
process. However, GlobalFoundries recently joined Google’s
open-source silicon initiative with a 180 nm process.

ITII. THE CARAVEL DESIGN FLOW

Google supports the open-source chip design with the open-
source PDK for the SkyWater 130 nm fab. The whole process is
running through Efabless. Efabless provides the Caravel harness
with a user area of about 10 mm?. The harness contains a
RISC-V management core connected to a Wishbone interface
to communicate with the user design. The RISC-V core uses
an external Flash memory for instructions and a serial interface
(UART) to communicate with the external world. The Caravel

3http://efabless.com/

http://efabless.com/

project also includes a scripted tool flow using open-source
tools and the open-source PDK.

The Caravel project also contains a simple test design
consisting of a counter to explore the tool flow. Synthesizing
and hardening the harness and the test design are fully scripted
and need no manual intervention. Furthermore, Caravel contains
pre-checks that must be completed before a tapeout. We
managed to harden the test design, perform the precheck,
register it at Efabeless, run the prechecks on the Efabless
servers, and run the tapeout on the Efabless server. Therefore,
making this test design ready for chip production. We managed
to run this full flow within just a single day. Of course, we did
submit the counter for production. However, we used this test
design as the starting point for our designs. Then we could
add small parts of the design incrementally and run the flow
till tapeout.

IV. THE DESIGNS

We developed two independent chips of different complexity:
the Leros processor and the Patmos processor. The Leros
processor is a simple state machine with datapath. The
datapath contains a program counter, an accumulator, an on-
chip memory, and an ALU. Leros is intended as a simple,
educational processor to serve as a medium complex example
in the last chapter of the textbook on digital design in Chisel [8].
Leros is programmed like on bare metal: no operating system
or standard library is available. Leros is intended as a small
support processor. Therefore, the memories are small enough
to fit on the chip. Leros uses dedicated instruction and data
memories, a so-called Harvard architecture. The read port of
the instruction memory is connected to the instruction fetch
of Leros, where the write port is connected to the RISC-V
management processor. The RISC-V processor can download
a program for the Leros processor and then release the reset
of Leros. Leros has as 10 devices a serial port and several
general purpose IO pins.

Patmos is a 5 stage pipeline, RISC style architecture. Patmos
itself is designed to be time-predictable to be used in real-time
systems. To support non-trivial programs, the compiler includes
a support library (e.g., for integer division and floating point
support). Furthermore, we have ported the C standard library
to Patmos. The combination of those two libraries consumes
about 1/4 MiB of memory, which is too large to be placed
on-chip. Therefore, we need external memory. Patmos has
instruction and data caches. Both caches are connected to a
memory controller and external shared memory. However, the
Caravel chip has only 32 IO pins, which are too few to connect
a parallel memory. We, therefore, use an external DRAM with
an SPI interface.

If both designs fail, e.g., we made a mistake with the
memories, we have a small backup design to see a chip work.
We added a small state machine to the design. That state
machine writes “Hello World!” in Morse code on one pin. So
the absolute minimum is an LED that sends text in Morse
code.

V. A CLASS PROJECT

In the spring semester of 2022, we organized a special
course to explore open-source design tools and build a Patmos
chip. Twelve students signed up for this course. Most of the
them were Electrical Engineering Bachelor students in their 4%
semester. They have as background two semesters of digital
design in VHDL and Chisel.

The task has been to integrate Patmos into the given Caravel
framework. As the usable pin count is just 32 pins, we needed
to find a solution for external memory. We selected a DRAM
with an SPI interface. The students developed an SPI interface
in Chisel and a memory controller that translates between the
Patmos burst interface and the SPI commands. They tested
Patmos with this external memory in an FPGA. We finalized
the whole process within one semester and recently finished
the tapeout.

In the Patmos project with the student group, we have been
not careful enough to build up the design incrementally. As
twelve students worked in parallel, we had a classic integration
phase at the end. Only after the integration, we run hardening.
The prechecks reported several errors. The final phase of fixing
all those errors took way longer than expected—we were
working until the deadline of the MPW-6 run and missed it
by a few hours. Therefore, we submitted the design for the
following MPW-7 run.

Overall, the class project was a success. Seeing the option to
get a real chip back from a class project was highly motivating
for the students. They worked hard to solve all those challenges
and overcome frustrations during development. The project
is hosted on several repositories on the GitHub organization
at https://github.com/os-chip-design. The course has received
press coverage.

VI. LESSONS LEARNED

We started the exploration of open-source tool flow without
prior knowledge of the ASIC backend flow. We are mainly
used to test our designs in FPGAs, wherein 90 % of the cases
synthesis, place and route, and bitstream generation is pressing
a single play button. DARPA’s research project “Intelligent
Design of Electronic Assets” claims a similar experience for
ASIC designs:

To overcome the design expertise gap and keep
pace with the exponential increase in chip complexity,
the Intelligent Design of Electronic Assets (IDEA)
program seeks to develop a general-purpose hardware
compiler for no-human-in-the-loop translation of
source code or schematic to physical layout (GDSII)
for SoCs, System-In-Packages (SIPs), and Printed
Circuit Boards (PCBs) in less than 24 hours.

The initial issues have been setting up the toolchain and
installing the correct versions of various tools. Since some
of those open-source projects are moving quite fast, their
dependencies also change. However, the documentation lacks

“https://www.compute.dtu.dk/english/news/nyhed?id=
ed010284-154f-43a3-a352-6dce97eaf72c

https://github.com/os-chip-design
https://www.compute.dtu.dk/english/news/nyhed?id=ed010284-154f-43a3-a352-6dce97eaf72c
https://www.compute.dtu.dk/english/news/nyhed?id=ed010284-154f-43a3-a352-6dce97eaf72c

behind. We had to ask in busy Slack channels and got friendly,
detailed help.

For tiny designs, like the counter example from Caravel,
the flow already works surprisingly well. We can generate
GDS files from the Verilog code in less than an hour. We
can perform precheck and tapeout in less than an afternoon.
However, with the medium complex design of a processor
with on-chip memories, there was some manual manipulation
necessary. In this process, we needed to dig deep into the
configuration files and the error logs.

Furthermore, we were surprised by the time and memory
necessary to synthesize medium-sized designs. The Patmos
processor synthesizes for an FPGA in the range of minutes, but
for Verilog to GDL, it was more in the range of several hours.
In future work, we need to learn how to partition a design for
hardening individual components. This might be trickier with
a Chisel-based design, as it spills out a single Verilog file.

In the greater Copenhagen area, we have several chip design
companies and high demand for chip design and verification
engineers. In the last years, we did not deliver enough engineers
and the companies have been forced to hire engineers from
Europe and further away. Using open-source tools and a free
chip service from Google enables a new dimension in teaching
ASIC design. With our course, we saw very motivated students
probably specializing in chip design and becoming future
engineers for Denmark’s booming chip design industry.

VII. CONCLUSION

Recent advances in open-source synthesis tools enable a full
open-source flow for digital designs from the description in a
hardware language down to the GDS files for chip production.
Google offers free chips on the 130 nm SkyWater fab for
an open-source project. We have explored that flow with two
different designs: the tiny sequential processor Leros and the
time-predictable RISC processor Patmos. The RISC processor
and the adaption for the Caravel project was a one-semester
class project at the Technical University of Denmark. We
managed to successfully tapeout the Patmos processor.

Source Access

Both projects are open-source and available on GitHub:
https://github.com/leros-dev/leros-chip and https://github.com/
os-chip-design/patmos-chip are the Caravel projects. The
Chisel source of the projects are at: https://github.com/
leros-dev/leros and https://github.com/t-crest/patmos.

REFERENCES

[1] Tutu Ajayi, Vidya A. Chhabria, Mateus Fogaca, Soheil Hashemi,
Abdelrahman Hosny, Andrew B. Kahng, Minsoo Kim, Jeongsup Lee,
Uday Mallappa, Marina Neseem, Geraldo Pradipta, Sherief Reda, Mehdi
Saligane, Sachin S. Sapatnekar, Carl Sechen, Mohamed Shalan, William
Swartz, Lutong Wang, Zhehong Wang, Mingyu Woo, and Bangqi Xu.
Toward an open-source digital flow: First learnings from the openroad
project. In DAC, page 76. ACM, 2019.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
Chisel: constructing hardware in a scala embedded language. In The 49th
Annual Design Automation Conference (DAC 2012), pages 1216-1225,
San Francisco, CA, USA, June 2012. ACM.

[2

—

[3]

[4]

[5]

[6]
[7]

(8]
[9

—

[10]

(11]

[12]

[13]
[14

[15]
[16

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Computer Aided Verification, pages 24—40, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

Andrew Dobis, Tjark Petersen, Hans Jakob Damsgaard, Kasper
Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye Andersen, Richard
Lin, and Martin Schoeberl. Chiselverify: An open-source hardware
verification library for chisel and scala. In 2021 IEEE Nordic Circuits and
Systems Conference (NORCAS): NORCHIP and International Symposium
of System-on-Chip (SoC), 2021.

Ahmed Ghazy and Mohamed Shalan. Openlane: The open-source digital
asic implementation flow. In Workshop on Open-Source EDA Technology
(WOSET), 2020.

Richard Lin. ChiselTest. https://github.com/ucb-bar/chisel-testers2.
Alan Mishchenko, Niklas Een, Robert Brayton, Stephen Jang, Maciej
Ciesielski, and Thomas Daniel. Magic: An industrial-strength logic
optimization, technology mapping, and formal verification tool. In Proc.
IWLS’10, 2010.

Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing,
2019. available at https://github.com/schoeberl/chisel-book.

Martin Schoeberl. Open-source research on time-predictable computer
architecture. In Proceedings of the 25th Euromicro Conference on Digital
System Design (DSD), 2022.

Martin Schoeberl, Simon Thye Andersen, Kasper Juul Hesse Rasmussen,
and Richard Lin. Towards an open-source verification method with chisel
and scala. In Proceedings of the Third Workshop on Open-Source EDA
Technology (WOSET), 2020.

Martin Schoeberl and Morten Borup Petersen. Leros: The return of
the accumulator machine. In Martin Schoeberl, Thilo Pionteck, Sascha
Uhrig, Jirgen Brehm, and Christian Hochberger, editors, Architecture
of Computing Systems - ARCS 2019 - 32nd International Conference,
Proceedings, pages 115-127. Springer, May 2019.

Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and
Daniel Prokesch. Patmos: A time-predictable microprocessor. Real-Time
Systems, 54(2):389—423, April 2018.

Veripool. Verilator. https://www.veripool.org/wiki/verilator.

Veripool. Verilator manual. https://www.veripool.org/wiki/verilator/
Manual-verilator, 2020.

Stephen Williams. Icarus Verilog. http://iverilog.icarus.com/.

Clifford Wolf. Design and implementation of the yosys open synthesis
suite. Bachelor thesis, Vienna University of Technology, 2013.

https://github.com/leros-dev/leros-chip
https://github.com/os-chip-design/patmos-chip
https://github.com/os-chip-design/patmos-chip
https://github.com/leros-dev/leros
https://github.com/leros-dev/leros
https://github.com/t-crest/patmos
https://github.com/schoeberl/chisel-book
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator/Manual-verilator
https://www.veripool.org/wiki/verilator/Manual-verilator
http://iverilog.icarus.com/

