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Motivation

● Many open-source hardware tools and compilers exist
● It would be useful to interchange between all of them
● There are commonalities among them

○ IRs use Trees/Netlists
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The Hardware Interchange Format

● Common API
● Serialize/Deserialize hardware IRs
● Fast
● Efficient 
● Standardized

○ Implemented to be a common Library
○ Uses C++ - 17 standard
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Data Format

● Comprises of statements of different types
○ Stores graph and tree properties common in IRs

● Each statement
○ Has a class (extendable to custom classes per compiler)
○ Generic Fields (Type, I/O, etc.)
○ Optional Fields (Specific to languages)
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HIF Example
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Binary Encoding

● Efficient encoding in binary files
● Stores data in two sets of files for efficient access

○ Identifiers:
■ Alphanumeric constant with support for multiple languages

○ Statements:
■ Structured encoding using statement type
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Results
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Results
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Conclusions

Available at https://github.com/masc-ucsc/hif

Used by                  High level and low level IRs

Several tasks/tools can be build/leverage it

Thanks,
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