
Hardware Interchange Format

Ramesh Jayaraman, Jing-Hsiang Huang, and Jose Renau
Department of Computer Science and Engineering

University of California, Santa Cruz

https://github.com/masc-ucsc/hif

1

https://github.com/masc-ucsc/hif

Motivation

● Many open-source hardware tools and compilers exist
● It would be useful to interchange between all of them
● There are commonalities among them

○ IRs use Trees/Netlists

2

The Hardware Interchange Format

● Common API
● Serialize/Deserialize hardware IRs
● Fast
● Efficient
● Standardized

○ Implemented to be a common Library
○ Uses C++ - 17 standard

3

Data Format

● Comprises of statements of different types
○ Stores graph and tree properties common in IRs

● Each statement
○ Has a class (extendable to custom classes per compiler)
○ Generic Fields (Type, I/O, etc.)
○ Optional Fields (Specific to languages)

4

HIF Example

5

Binary Encoding

● Efficient encoding in binary files
● Stores data in two sets of files for efficient access

○ Identifiers:
■ Alphanumeric constant with support for multiple languages

○ Statements:
■ Structured encoding using statement type

6

Results

7

Results

8

Conclusions

Available at https://github.com/masc-ucsc/hif

Used by High level and low level IRs

Several tasks/tools can be build/leverage it

Thanks,

9

https://github.com/masc-ucsc/hif

