
github.com/JulianKemmerer/PipelineC

WOSET 2022

Easy open-source hardware description between RTL and HLS

https://github.com/JulianKemmerer/PipelineC

Summary
● What is PipelineC? HDL/RTL/Generator/HLS? Origin Story?

● Fundamental building block examples

● Basic use of the tool

● Advanced features

● Quick graphics example design demo

“We do these things not because they are easy
but because we thought they would be easy”

-Internet programming meme

Also apparently my thinking in 2014~2015

Pure Functions = Comb. Logic
HDLs know this: ‘function’ from VHDL/Verilog...

PipelineC combines functions+modules from HDL

uint8_t my_func(uint8_t input_name)
{
 return ...
}

-- Generated PipelineC VHDL
entity my_func is
port(
 input_name :
 in unsigned(7 downto 0);
 return_output :
 out unsigned(7 downto 0)
);
end my_func; my_func

X.X ns
delay

 Comb. logic can be autopipelined
HLS tools know this too (do it ~well and go further, initialization interval !=1 w/ state machines, RAMs, AXI etc)...

#pragma PART "xc7a100tcsg324-1"
#pragma MAIN_MHZ my_func 100.0

float my_func(
 float x,
 float y,
 uint1_t sel
){
 float rv;
 if(sel){
 rv = x*y;
 }
 else{
 rv = x+y;
 }
 return rv;
}

 my_func

 MULT

 ADD

Pipeline stages depend on target device + fmax

sel

x

y

x

y

rv

rv

sel

● #pragma MAIN_MHZ my_func 100.0
○ Single instance top level MAIN

■ Inputs and outputs are top level ports
○ Function runs at 100MHz
○ Most functions don't specify frequency

■ Instead inferred from the call location instance inside a MAIN
■ Top level functions also inferred frequency from clock crossings

between MAIN functions

● #pragma PART "xc7a100tcsg324-1"
○ Pipelining will be specific to the Xilinx 7 series (Artix 7 100T)
○ Different FPGA models can have vastly different timing characteristics and

built-in primitives(ex. DSPs/multipliers)
○ ‘One size fits all solutions’ can be over/under pipelined

Basic use of the tool...

● Produces VHDL of II=1 pipeline
○ Some fixed latency of N cycles
○ As required to meet FMAX on specific device

■ ex. 100MHz, 5 cycles
● Generates helper scripts for importing into other tools

○ Ex. Vivado TCL scripts, Quartus .qip IP files
● Or Verilog via GHDL+yosys

○ Yay another layer of code generation

Example outputs...
-- Generated PipelineC VHDL
entity top is
port(
 clk_100p0 : in std_logic;
 -- IO for each main func
 my_func_x
 : in std_logic_vector(31 downto 0),
 my_func_y
 : in std_logic_vector(31 downto 0),
 my_func_sel
 : in unsigned(0 downto 0),
 my_func_return_output
 : out std_logic_vector(31 downto 0)
);
end top;

my_func Clock Goal: 100.00 (MHz) Current: 116.16 (MHz)(8.61 ns) 5 clks
Met timing...
================== Writing Results of Throughput Sweep ===============
Output VHDL files: pipelinec_output/read_vhdl.tcl
Done.
====================== Doing Modelsim Simulation =====================

pipelinec my_func.c --sim --modelsim

...

● ~Simulation: compile parts of PipelineC as C - simulate by writing a C/C++ program
● Generated VHDL is completely synthesizable

○ Simulates reliably, limited/no simulator specific constructs/dependencies
● Compatible with all HDL simulators, can generate templates for some:

Simulation support...

--sim

--modelsim
--verilator --main_cpp
--cocotb --makefile
--ghdl
--edaplay

● High level synthesis tool
○ Cannot use arbitrary C code
○ No global shared memory model, pointers,

threads, etc
● Compiled C based hardware simulator

○ Entire whole designs cannot simply be
compiled and run

○ Only parts of PipelineC code can be compiled
by C compilers and run (is encouraged).

● Meta-programming hardware generator
○ Uses C type system and preprocessor

● Stitching tool automating the build flow from code to
bitstream:
○ Does not create PLLs, etc for clock generation
○ Does not know top level pin locations, etc
○ Does partially automate synthesis runs but

automation to final bitstream left to user

Pause: What is PipelineC not?

● Hardware description language
● Started as a comb. logic autopipelining tool

○ Not originally a full HDL...
● Not actually regular C.

○ Can be partly compiled by gcc/llvm for basic 'simulation'.
● Can reasonably replace Verilog/VHDL.

○ Compiler produces synthesizable and human readable+debuggable VHDL.
● Autopipelining is now one of many features “between RTL and HLS”

So...what is PipelineC?

● Thanks Dr. Taskin!

Functionality ‘inside the module’:
● Describing hardware not design intent:

○ “How does the design do what it does?”
● State machines
● Pipelines
● Inferred BRAMs, DSPs/multipliers, etc
● Not in love with C

○ Want easy, common, low level, compilable
● Just trying to make RTL design easier

PipelineC is more about...

● Purely ‘stitching’ IP/modules/ together

● ‘Build a SoC’ / software+hardware system generators

● Device bus/address space management

● 1-click bitstreams

PipelineC is less about...

Related Futures
● High level software, Python, Cloud-Scale

○ LiteX, FuseSoC, SiliconCompiler
○ DFiant Remote, Sabana

● Open source block diagram
○ ex. GNURadio Companion a start?
○ Reason why FPGA tools have block diagrams...

 Comb. logic can be attached to registers
RTL knows this: clocked processes, state machines from VHDL/Verilog...

“Explicit” static state registers, ~repeating functions in single clock domain

uint8_t my_counter(
 uint8_t increment
){
 static uint8_t the_reg;
 the_reg += increment;
 return the_reg;
}

uint8_t my_counter(
 uint8_t increment
){
 static uint8_t the_reg;
 uint8_t rv = the_reg;
 the_reg += increment;
 return rv;
}

the_reg

+
increment

return

the_reg

+
increment

returnrv

Not C: Each function call location is a new instance!

 Does not autopipeline!

Getting device specific timing feedback...

Function: BIN_OP_PLUS_uint8_t_uint8_t, path delay: 2.236 ns
my_counter Clock Goal: 500.00 (MHz) Current: 459.98 (MHz)(2.17 ns)
Cannot pipeline path to meet timing:
START: my_counter/the_reg =>
 ~ 2.174 ns of logic+routing ~
END: => my_counter_return_output

● Works with many tools
○ Xilinx Vivado
○ Intel Quartus
○ Lattice Diamond
○ GHDL+Yosys+nextpnr
○ Efinix Efinity
○ PyRTL ASIC Timing Models

● Increment Example:

What if accumulating a 32b float?

Function: BIN_OP_PLUS_float_float, path delay: 19.702 ns
my_counter Clock Goal: 500.00 (MHz) Current: 51.46 (MHz)(19.43 ns)
Cannot pipeline path to meet timing:
START: my_counter/the_reg =>
 ~ 19.433 ns of logic+routing ~
END: => my_counter/the_reg

This device specific timing information allows autopipelining!

Advanced PipelineC Features...

Global Variables / Clock Crossings

#pragma MAIN_MHZ func_a 100.0
void func_a(uint8_t input)
{
 ...
 the_wire = input;
}

#pragma MAIN_MHZ func_b 100.0
uint8_t func_b()
{
 ...
 return the_wire;
}

uint8_t the_wire; // Globally defined+visible

 func_a func_b

the_wire

input return

Crosses hierarchy boundaries...
One write, multiple reads allowed...

Clock rate aware+checked:
● Wires
● De/serializers
● FIFOs
● Async

Used for derived FSM
arbitration/shared global resources

Great for board IO, resets, other ~global ‘interfaces’. High level ~stitching too.

Multiple MAIN functions...

Functions with implicit state can derive state
machines (w/ valid+ready handshaking!)

Experimental/New for PipelineC but awesome HDLs like Silice knew ~this too!

// No clock cycles,
// combinatorial logic
uint32_t test0(uint32_t x)
{
 uint32_t rv = x + 1;
 return rv;
}

// One clock cycle
// before add, a FSM
uint32_t test1(uint32_t x)
{
 __clk();
 uint32_t rv = x + 1;
 return rv;
}

// One clock cycle
// after add, a FSM
uint32_t test2(uint32_t x)
{
 uint32_t rv = x + 1;
 __clk();
 return rv;
}

+1
rvx

 x

 register

+
1

rv

x

 rv

 register
+1

x
rv

“First State” “Second State”
“First State” “Second State”

Derived Finite State Machines (continued)
// Two subroutine FSMs
uint32_t main(uint32_t a)
{
 uint32_t b = test1(a);
 uint32_t c = test2(b);
 return c;
}

In
HS

test1
sub

test2
sub

Out
HS

I

O

I

O

test1

test2

main

● Functions are still modules
○ Just with built in handshaking for

function entry+return
○ Func body code derives states

● Logical state diagram
○ Actual states from __clk()

● Each function call is a new instance
○ Most of the time*

More Advanced Features:
● Inferred clock enables, since modules~=functions: if(cond) my_module(...)
● Raw VHDL, black boxes, IP, use
● User generated/derived-clocks, async/false paths
● Feedback wires (flow control / ~comb. loops)
● Shared/arbitrated derived FSMs*, ~threads, ~atomics, ~remote system calls
● volatile keyword for ... weird stuff
● Generated helper software C code

Example project...

Most Complex Hardware Demo Yet
This work would not have been possible without collaboration
from @suarezvictor.

He wrote an interactive raytraced game specifically using
PipelineC. The game also compiles as C++ and runs in realtime
on a PC. He also wrote a C++ parser/generator as part of his
CFlexHDL project, that converts operations on fixed point,
floating point and vector types to PipelineC-compatible C syntax,
using C++ operator overloading.

We found many bugs and optimizations opportunities together,
over close to a year of work together :) Thanks Victor!

The specifics of the raytracer and parser/generator really should
be a talk of its own...

Victor Suarez Rovere
@suarezvictor

https://youtu.be/F8jlJapQbFY

http://www.youtube.com/watch?v=F8jlJapQbFY
https://youtu.be/F8jlJapQbFY

More on Sphery vs. Shapes...

Ray Tracing Simple Top Level Design

 frame_logic()
 @60Hz

 pixel_logic()
 @148.5MHz

● Two clock domains, ~two #pragma MAIN functions, two important global wires

● Things occurring at 60Hz
● Per frame animation, object pos, etc
● Very slow state machine

● Things occurring at pixel clock, 148.5MHz
● Generating VGA timing: h/vsync, x,y positions to render
● Generating frame clock, 60Hz
● Long pixel rendering pipeline from C function

buttons

frame clock

game state

VGA signals

pixel_t render_pixel(uint16_t x, uint16_t y)

Future Work

==
= ===================== ====================== ======================== ==
= ==== ==================== ===================== === ====================== ==== =
= ==== ==================== ==================== =========== ======== ===== ==== =
= ==== == == ==== === == == = ==== === =========== ======== ========== ==
= ======= = == = == ====== == = == ======== == ====== ===
= ======== == = == == == == = == == =========== ======== ======== ====
= ======== == === ===== == == = == ===== =========== ======== ==============
= ======== == ===== = == == == = == = === === ========================= ====
= ======== == ====== === == == = === ===== ========================== ====
==

● Improvements to autopipelining
○ Report+optimize for area/resources
○ Dealing with feedback / stall signals

● Improved derived finite state machines
○ Shared resources / threads
○ Better code generation

● Template types+functions:
○ How to parameterize functions?

■ Compile time computation
○ Currently ugly preprocessor hacks

● Full support for ‘compile entire PipelineC designs with
software compilers’

○ Built in ultra-fast simulations
● Modern hardware compiler frameworks / intermediates +

tools like CIRCT+XLS

Thanks folks! Questions? Comments? More code?
https://github.com/JulianKemmerer/PipelineC

https://github.com/JulianKemmerer/PipelineC-Graphics

https://github.com/suarezvictor/CflexHDL

Demo Video: https://youtu.be/F8jlJapQbFY

Talk w/ more ray tracer details: https://youtu.be/41nqzbSqBbA

Twitter: @pipelinec_hdl @suarezvictor

Talk to us on PipelineC Discord: https://discord.gg/Aupm3DDrK2

<- w/ white paper and
more videos!

https://github.com/JulianKemmerer/PipelineC
https://github.com/JulianKemmerer/PipelineC-graphics
https://github.com/suarezvictor/CflexHDL
https://youtu.be/F8jlJapQbFY
https://youtu.be/41nqzbSqBbA
https://twitter.com/pipelinec_hdl
https://twitter.com/suarezvictor
https://discord.gg/Aupm3DDrK2

END

