NEENNE; NN DNNENE: NENDNEE DE IEEE B B IR
H—HH Nl —E——H i EE—l—
HEEEEE 0N DNEERE-~NNEER: N A N N

H— Hl— i— N HN N E— N

WOSET 2022

Easy open-source hardware description between RTL and HLS

github.com/JulianKemmerer/PipelineC

https://github.com/JulianKemmerer/PipelineC

Summary

e What is PipelineC? HDL/RTL/Generator/HLS? Origin Story?
e Fundamental building block examples

e Basic use of the tool

e Advanced features

e Quick graphics example design demo

“We do these things not because they are easy
but because we thought they would be easy”

-Internet programming meme

Also apparently my thinking in 2014~2015

Pure Functions = Comb. Logic

HDLs know this: ‘function’ from VHDL/Verilog...
PipelineC combines functions+modules from HDL

uint8 t my func(uint8 t input name) —— Generated PipelineC VHDL

{ entity my func is
return ... po?t(
} input name :

in unsigned (7 downto 0);
return output :
out unsigned (7 downto 0)
) ;

end my func;

X.X ns
delay

Comb. logic can be autopipelined

HLS tools know this too (do it ~well and go further, initialization interval =1 w/ state machines, RAMs, AXI etc)...

#pragma PART "xc7al00tcsg324-1"
#pragma MAIN MHZ my func 100.0

X
rv

float my func(
float x,
float vy, sel
uintl t sel
) {
float zrv;
if (sel) {
rv = x*y;
}
else{
rv = x+y;
}

return rv;
} sel

y

Pipeline stages depend on target device + fmax

Basic use of the tool...

e j#pragma MAIN MHZ my func 100.0

o Single instance top level MAIN
m |nputs and outputs are top level ports

o Function runs at 100MHz

o Most functions don't specify frequency
m Instead inferred from the call location instance inside a MAIN
m Top level functions also inferred frequency from clock crossings

between MAIN functions

e fjpragma PART "xc7al00tcsg324-1"
o Pipelining will be specific to the Xilinx 7 series (Artix 7 100T)
o Different FPGA models can have vastly different timing characteristics and
built-in primitives(ex. DSPs/multipliers)
o ‘One size fits all solutions’ can be over/under pipelined

Example outputs...

. . .] -- Generated PipelineC VHDL
pipelinec my func.c --sim --modelsim

entity top is

port (
clk 100p0 : in std logic;
e Produces VHDL of II=1 pipeline - ;0 for each main func
. m unc X
© Some fixed Iatency of N cycles 3:,_in sEd logic vector (31 downto 0),
o As required to meet FMAX on specific device my func y -
u ex. 1OOMHZ, 5 Cycles : in std logic_vector (31 downto 0),
. . . . my func sel
e Generates helper scripts for importing into other tools ."in unsigned(0 downto 0),
o Ex. Vivado TCL scripts, Quartus .qip IP files my func return output
PY Or Venlog Vla GHDL+yosyS : out std_logic_vector(31 downto 0)

)

o Yay another layer of code generation end top;

my func Clock Goal: 100.00 (MHz) Current: 116.16 (MHz) (8.61 ns) 5 clks
Met timing...

Writing Results of Throughput Sweep
Output VHDL files: pipelinec_output/read vhdl.tcl
Done.

Doing Modelsim Simulation

Simulation support...

e ~Simulation: compile parts of PipelineC as C - simulate by writing a C/C++ program

e Generated VHDL is completely synthesizable
o Simulates reliably, limited/no simulator specific constructs/dependencies

e Compatible with all HDL simulators, can generate templates for some:

M o d e I Sim GCOtD __Si-n-lmodelsim

--verilator --main_cpp

--cocotb --makefile

--ghdl

--edaplay
VERILATOR playground

2 clk_100p0
gL my func x +0 1.23000
B< my func y +0 4.56000

B< my func_sel 0 1
£8-“» my_func_return_output +0 15.79000

Pause: What is PipelineC not?

XILINX

VITIS i

e High level synthesis tool
o Cannot use arbitrary C code
o No global shared memory model, pointers,
threads, etc High-Level u' M‘ Hl_s
e Compiled C based hardware simulator Synthesis B EI_. [‘,[]MPMR
o Entire whole designs cannot simply be - WW
compiled and run L. o
o Only parts of PipelineC code can be compiled SRS B
by C compilers and run (is encouraged). backenid
e Meta-programming hardware generator amamatilana?
o Uses C type system and preprocessor VERILATOR amaranth
e Stitching tool automating the build flow from code to L
cCHSeu

bitstream:
Does not create PLLs, etc for clock generation

€D\
@

O
o Does not know top level pin locations, etc
o Does partially automate synthesis runs but
Build your hardware, easily!

automation to final bitstream left to user

S0...what is PipelineC?

e Hardware description language
e Started as a comb. logic autopipelining tool
o Not originally a full HDL...
e Not actually regular C.
o Can be partly compiled by gcc/llvm for basic 'simulation’.
e Can reasonably replace Verilog/VHDL.
o Compiler produces synthesizable and human readable+debuggable VHDL.
e Autopipelining is now one of many features “between RTL and HLS”

e Thanks Dr. Taskin!

INNENE- NE-DNNNNE- NENENEEBE- Il-EE N BN I
N~ E—aa—A o EE—l—

NEENNN NN NNNNNE-NEEEE- NN A . DBs Akl INIVERSLTY
=# =H=|# m— M =||-uwm-||-,# 1 College of
| /M| SN NN - Englneerlng

Baris Taskin

Professor
Electrical and Computer Engineering

PipelineC is about...

Functionality ‘inside the module’:

Describing hardware not design intent:

o “How does the design do what it does?”
State machines

Pipelines

Inferred BRAMs, DSPs/multipliers, etc
Not in love with C

o Want easy, common, low level, compilable
Just trying to make RTL design easier

PipelineC is about...

e Purely ‘stitching’ IP/modules/ together
e ‘Build a SoC’ / software+hardware system generators
e Device bus/address space management

e 1-click bitstreams

Related Futures

e High level software, Python, Cloud-Scale

o LiteX, FuseSoC, SiliconCompiler \
o DFiant Remote, Sabana
e Open source block diagram \J

o ex. GNURadio Companion a start?

o Reason why FPGA tools have block diagrams...
SiliconCompiler

L~iant

Build your hardware, easily!

Comb. logic can be attached to registers

RTL knows this: clocked processes, state machines from VHDL/Verilog...
“Explicit” static state registers, ~repeating functions in single clock domain
Not C: Each function call location is a new instance!

uint8 t my counter(uint8 t my counter(
uint8 t increment uint8 t increment
) {) {
static uint8 t the reg; static uint8 t the reg;
the reg += increment; uint8 t rv = the reg;
return the reg; the reg += increment;
} return rv;
| }
increment ,
return increment '
=+
> the reg rv return
the reg

Does not autopipeline!

Getting device specific timing feedback...

Works with many tools

O 0 0O 0O O O

Xilinx Vivado
Intel Quartus

Lattice Diamond ’
GHDL+Yosys+nextpnr

Efinix Efinity
PyRTL ASIC Timing Models

Increment Example:

uint8 t my counter(
uint8 t increment

) {

static uint8_t the_reg;
the reg += increment;
return the_reg;

}

increment

return

the_ reg

-

This device specific timing information allows autopipelining!

. LATTICE
", BIAMOND DESIGN SOFTWARE

v DESIGN SOFTWARE

g
efinitys

Function: BIN OP PLUS uint8 t uint8 t, path delay: 2.236 ns

my counter Clock Goal: 500. 00 (MHZ) Current 459.98 (MHz) (2.17 ns)
Cannot pipeline path to meet timing:

START: my counter/the reg =>

~ 2.174 ns of logic+routing ~
END: => my counter_ return output

What if accumulating a 32b £loat?

Function: BIN OP PLUS float float, path delay: 19.702 ns
my counter Clock Goal: 500.00 (MHz) Current: 51.46 (MHz) (19.43 ns)
Cannot pipeline path to meet timing:
START: my_ counter/the reg =>
~ 19.433 ns of logic+routing ~
END: => my counter/the reg

Advanced PipelineC Features...

Global Variables / Clock Crossings

Multiple MAIN functions...

uint8 t the wire; // Globally defined+visible

#pragma MAIN MHZ func a 100.0 #pragma MAIN MHZ func b 100.0
void func_a(uint8 t input) uint8_t func_b()
{ {
the wire = input; return the wire;
} }

the wire

Crosses hierarchy boundaries... v
One write, multiple reads allowed... :

Clock rate aware+checked:

dnput | k e Wires L return
fun c_a) De/serializers fun C_b
) FIFOs
e Async

Used for derived FSM
arbitration/shared global resources

Great for board 10O, resets, other ~global ‘interfaces’. High level ~stitching too.

Functions with implicit state can derive state
machines (w/ valid+ready handshaking!)

Experimental/New for PipelineC but awesome HDLs like Silice knew ~this too!

// No clock cycles, // One clock cycle // One clock cycle
// combinatorial logic // before add, a FSM // after add, a FSM
uint32 t test0(uint32_t x) uint32 t testl (uint32_t x) uint32 t test2(uint32_t x)
{ { {
uint32 t rv = x + 1; __clk(); uint32 t rv = x + 1;
return rv; uint32 t rv = x + 1; __clk();
} return rv; return rv;
} }
rv
X
rv v rv
1 % x register
register J ~ J
N J o\ “First State “Second State”
Y Y

“First State” “Second State”

Derived Finite State Machines (continued)

// Two subroutine FSMs main

uint32 t main(uint32 t a) = |

{ (D[¢
uint32 t b = testl(a); e,

uint32 t ¢ = test2(b);

return c;

}

o Just with built in handshaking for

e Functions are still modules @ test2

function entry+return
o Func body code derives states

e Logical state diagram @ m{ Y
o Actual states from clk () @ 8
e Each function call is a new instance g \

o Most of the time* ~—

More Advanced Features:

Inferred clock enables, since modules~=functions: if(cond) my_module(...)
Raw VHDL, black boxes, IP, use

User generated/derived-clocks, async/false paths

Feedback wires (flow control / ~comb. loops)

Shared/arbitrated derived FSMs*, ~threads, ~atomics, ~remote system calls
volatile keyword for ... weird stuff

Generated helper software C code

m Something isn't working @ 9
duplicate This issue or pull request already exists
enhancement New feature or request @ 43 <+—

good first issue Good for newcomers @ 7

Example project...

Most Complex Hardware Demo Yet

This work would not have been possible without collaboration
from @suarezvictor.

He wrote an interactive raytraced game specifically using
PipelineC. The game also compiles as C++ and runs in realtime
on a PC. He also wrote a C++ parser/generator as part of his
CFlexHDL project, that converts operations on fixed point,
floating point and vector types to PipelineC-compatible C syntax,
using C++ operator overloading.

We found many bugs and optimizations opportunities together,
over close to a year of work together :) Thanks Victor!

Victor Suarez Rovere

The specifics of the raytracer and parser/generator really should @suarezvictor
be a talk of its own...

https://voutu.be/F8ilJapQbFY

http://www.youtube.com/watch?v=F8jlJapQbFY
https://youtu.be/F8jlJapQbFY

More on Sphery vs. Shapes...

, - ILI[I)\IX Electronic Innovation Network Xilinx Community TEC H S POT
tom 5 HAR DWAR E FPGA real-time light trac FPGA chip shown to be over 50 times

more efficient than a Ryzen 4900H

FPGA Demo Shows Efficiency Gains platform performance is !
FPGA achieved similar performance to a laptop CPU with a fraction of the energy

¢ OmparedtOX% St R9-4900H CPU soft solt "; ™™ ~Nx SOFTWARE -

Is this a glimpse of the future of programming? Submitted by judy on Fri, 09/30/2022 - 10:50 (\@ EMBEDDED
Although in the field of traditional hardware er

000 QOO *comments) . SYSTEMS NEWS
(FPGA) is more famous. But some recent suc... P BN ¢ (oNxsOFT) -
game Computlng have once agaln attracted tf3D game running on FPG/—\ shown to be 50x more efficient than on x86

. hardware

Sphery vs. shapes is an open-source 3D raytraced game written in C and translated into FPGA bitstream that runs 50

P I p e I I n e ‘ G rap h I CS ! times more efficiently on FPGA hardware than on an AMD Ryzen processor.

Verilog and VHDL languages typically used on FPGA are not well-suited to game development or other complex
applications, so instead, Victor Suarez Rovere and Julian Kemmerer relied on Julian’s “PipelineC” C-like hardware
description language (HDL) and Victor's CflexHDL tool that include parser/generator and math types library in order to run
the same code on PC with a standard compile, and on FPGA through a custom C to VHDL translator.

https:/github.com/JulianKemmerer/PipelineC-Graphic:

FPGA Demo:

e ‘“Sphery v.s Shapes”

e Realtime raytraced bouncing ball game
e No frame buffer, “chasing the beam”

e 1080p 60FPS, 24bpp color
L]
L]
L]

Fully autopipelined, 148.5MHz pixel clocl
No CPU for animation or rendering
Easy “C" debug from software->FPGA

#hdl #project #fpga
PipelineC Overview + FPGA Graphics Demo

Ray Tracing Simple Top Level Design

buttons frame logic()

e Two clock domains, ~two #pragma MAIN functions, two important global wires

game state

@60HzZ

pixel logic() VGA signals
@148.5MHz

frame clock

Things occurring at 60Hz
Per frame animation, object pos, etc
Very slow state machine

Things occurring at pixel clock, 148.5MHz

Generating VGA timing: h/vsync, X,y positions to render
Generating frame clock, 60Hz

Long pixel rendering pipeline from C function
pixel t render pixel (uintl6é_t x, uintlé_t y)

Future Work

e Improvements to autopipelining
o Report+optimize for area/resources
o Dealing with feedback / stall signals
e Improved derived finite state machines
o Shared resources / threads
o Better code generation
e Template types+functions:
o How to parameterize functions?
m Compile time computation
o Currently ugly preprocessor hacks
e Full support for ‘compile entire PipelineC designs with
software compilers’
o Builtin ultra-fast simulations
e Modern hardware compiler frameworks / intermediates +
tools like CIRCT+XLS

Thanks folks! Questions? Comments? More code?

https://github.com/JulianKemmerer/PipelineC

https://aithub.com/JulianKemmerer/PipelineC-Graphics <- w/ white paper and

.
' Sphery vs. shapes, the first raytraced game that is not software
more videos e st e e "
L] L] -
.
https://qithub.com/suarezvictor/CflexHDL S
- - that doesn't have any CPU, requiring few silicon resources that run at an outstanding power

efficiency.

Demo Video: https://youtu.be/F8jlJapQbFY
Talk w/ more ray tracer details: https://youtu.be/41ngzbSgBbA

Twitter: @pipelinec hdl @suarezvictor

Talk to us on PipelineC Discord: https://discord.ga/Aupm3DDrK2

» v

\f J ‘) / 3 'i‘. e
15 :_n_.- o 4 / Q

https://github.com/JulianKemmerer/PipelineC
https://github.com/JulianKemmerer/PipelineC-graphics
https://github.com/suarezvictor/CflexHDL
https://youtu.be/F8jlJapQbFY
https://youtu.be/41nqzbSqBbA
https://twitter.com/pipelinec_hdl
https://twitter.com/suarezvictor
https://discord.gg/Aupm3DDrK2

END

