IRSIM: A Switch-Level Simulator and Dynamic
Power Analysis Tool

Jason Liang

Electrical and Computer Engineering Department

UC San Diego
San Diego, California
jsliang@ucsd.edu

Abstract—IRSIM is an open-source switch level simulator that
analyzes digital circuits at the device (transistor) level using a
linear switch-based model that depends on whether a transistor
is “on” or “off” but accounting for the resistance through the
device for delay estimates. This event-based simulation makes
IRSIM much faster than a device modeling simulator like SPICE,
but slower than a Verilog simulator, which models circuits at the
gate level yet lacks a power analysis component. However, since
Verilog simulations are still much faster than IRSIM for logic
simulations, IRSIM has been largely ignored, and its dynamic
power analysis feature forgotten. In this paper, we discuss the
software methods in IRSIM with particular emphasis on further
improving its dynamic power analysis capabilities.

Index Terms—transistor, circuit simulation, timing, switching,
dynamic power

I. INTRODUCTION

Power consumption is an increasing concern in today’s
high performance digital designs. Due to advances in VLSI
manufacturing technologies resulting in increasing device den-
sities and performances, power efficiency is becoming more
important than ever. Proper dynamic power analysis requires
calculating switching power while simulating a device under-
going switching activity as clocks are toggled between high
and low logic values and parts of the circuit are put into
specific operating modes. Although originally developed to
address the need for fast and reasonably accurate digital circuit
simulation prior to the development of Verilog and VHDL, IR-
SIM has also been given a set of power estimation commands,
though it is a less advertised feature. Its main functionality
is incremental simulation [1] in which each transistor in a
design is modeled as a voltage-controlled resistive switch.
This simplified linear model performs quite well; each FET
transistor can be in either an ON or OFF state and events
are added to a queue to be evaluated each time a transistor
switches states. Turning a transistor ON means replacing the
switch with a resistor connecting the source and drain nodes.
The voltage through a resistor can then be one of three values:
logic HIGH, logic LOW, or undetermined, and is determined
by solving for the voltage in a resistor network formed by the
current path of ON transistors. Users can also modify the cir-
cuit for incremental resimulation, in which only parts that have
been modified need to reevaluated. IRSIM contains a digital
simulation analyzer that allows for debugging circuit behavior,

R. Timothy Edwards
SVP Analog and Platform
Efabless, Inc.

Palo Alto, California
ORCID 0000-0001-8772-0753

similar to Verilog testbenches, as well as a Tcl-command line
interface for controlling these simulations, generating custom
user subcircuits, and performing power analysis.

II. BACKGROUND
A. Simulation by Events

Simulation in IRSIM is initiated by parsing input stimuli
from a file or the command line, which are interpreted as
events to be scheduled in a time queue. As simulation ad-
vances, events that are scheduled to occur are removed from
the queue and all the node voltages specific to these events
change values. If these nodes are part of current paths of ON
transistors, the node voltages along these paths are also marked
for reevaluation. If any calculations change from the current
value, an event is scheduled for transition, whose occurrence
is scheduled by using an RC time constant delay. This process
is repeated until no more events are left in the queue at the
end of the simulation time.

B. Power Analysis

Many techniques and tools exist for computing the power
consumed in digital and mixed-signal circuits, but few open
source tools exist for these purposes. The OpenROAD project
[7], an open source RTL to GDS generation workflow, uses a
static timing analyzer (STA) tool called OpenSTA for instance-
based power reporting. STA tools perform power analysis
similar to timing analysis by reading in power parameters in
the associated standard cells indicated in Liberty (.lib) files.
Dynamic power is then calculated by summing the switching
power and the capacitance load power and multiplying by
a constant representing the average fraction of transistors
switching on any given clock cycle, yielding a single value.
This method only estimates average dynamic power usage
and so cannot analyze situations such as power mitigation
techniques, where parts of a circuit are placed in a low-power
mode, a feature that has recently seen extensive development.

Typically, dynamic power is estimated using the formula

cv?

pP=-_
2

where C is the switching capacitance, V' is the voltage, and
t is the frequency, typically a clock period. The numerator

logic analyzer display

Zoom‘ Base‘ Window\ Print

1059.12
0SC
div

clockp

resetb
enable

1099.12

Fig. 1. Logic analyzer simulation for digital ring oscillator

scales with the switching activity, so the more frequently a
voltage value changes logic levels, the greater the power dis-
sipation. By contrast, IRSIM calculates the switching energy
of every transistor charging or discharging into a capacitive
load. Then, as simulation time progresses, switching energy
is accumulated and power is computed at the end as the total
energy over the time period simulated.

III. DYNAMIC POWER ANALYSIS
A. Existing Features

For digital simulation, users provide a parameter (“.prm”)
file that specifies the process technology the circuit is to be
manufactured in and any other process-dependent data, as well
as a “.sim” file for the circuit netlist description. Users then
provide input stimuli in the form of Tcl commands, which
may be in a script, specifying events that are to be entered
and scheduled in a time queue. IRSIM features an “analyzer”
(GUI) display, and signals to watch can be specified using the
keyword ana, followed by a vector of signals [3].

Power analysis code in IRSIM prior to the current devel-
opment work allows users to load in a log file for writing
nodal transitions. They can then set the specific nodes they
want to trace and the power supply voltage, and then simulate
the design for a specified amount of time. For example, we
consider a digital locked loop circuit on the open source
Caravel SoC [2], which contains a digital controller and ring
oscillator for high speed clock generation. The simulation GUI
outputs the waveforms shown in Fig. 1. A generic power
analysis script generally consists of the following commands:

powlogfile <out file>
powtrace <nodes to watch>
powstep

vsupply <voltage>

s <time>

sumcap

While this code works and produces a power calculation
result, it is minimally useful to a designer and has a number of
limitations. The remaining sections describe the development
work done to enhance IRSIM’s dynamic power analysis.

B. Handling Multiple Device Types and Parameters

In IRSIM code prior to this development work, IRSIM
only supported characteristics of a single pair of transistor
devices, one nFET and one pFET. The authors extended the
IRSIM code to support circuits with multiple device types [6].
While the “.sim” file format used by IRSIM represents all
transistors by either ‘n’ or ‘p’ tokens, there is also an ‘x’ token,
indicating the use of a subcircuit. While the subcircuit token
was originally used as a special simulation type in IRSIM,
it is also convenient to use to describe transistors and other
devices, where it can overcome the limitation of the original
‘n’ and ‘p’ models, and represent transistors of different types
and with different characteristics (i.e., on and off resistances).
To this purpose, the ‘.prm’ input format used by IRSM was
extended to add a device keyword that allows a name of
a foundry device model to be mapped to an IRSIM nFET or
pFET simulation device, with the simple syntax:

device nfet|pfet <device name>

To specify the three resistances used by IRSIM to model a
transistor (static, dynamic—1low, and dynamic—high),
the original resistance was modified to take a device name
as the second argument, allowing every device type to be given
its own unique characteristics:

resistance <device name>
static|dynamic-high|dynamic—low
<width> <length> <resistance>

Accompanying this format change, the layout tool Magic [4]
was modified to produce the ‘x’ record output for .sim files,
and IRSIM support for the SkyWater sky130 process node in
the open_pdks tool [5] was modified to generate the new
format .prm files. The new extended format maintains back-
ward compatibility with all legacy parameter and simulation
files.

C. Handling Multiple Power Domains

By being able to analyze circuits with multiple device types,
IRSIM can effectively analyze circuits with multiple power

domains, either dual-voltage domains with thick- and thin-
oxide devices, or use of a standby power domain, which is
common in low power design methodology: In order to reduce
leakage power, some transistors are put in a “sleep mode” at a
lower voltage and isolated from the primary power supply,
also known as power gating. To support this functionality,
the existing vsupply Tcl command was modified to take
a second power node parameter and its own voltage value
to specify multiple voltage domains. The power command
(used to declare a power supply net) functionality was also
modified to be able to be called multiple times, indicating
that the circuit contains multiple nodes connected to different
power supplies instead of the program assuming a single
global power supply. To facilitate computing power during
simulation time, a routine was developed to search for all
transistors connected to a given power supply and then follow
each transistor fanout and set the power supply it connects to.
The power calculation was also modified to accumulate total
energy instead of capacitance after each step (defined by the
simulation time) using the formula

E =%(CV?)

where C' is the capacitance and V is the voltage supply of a
node. This method allows the multiple voltage domains to be
handled with very little additional overhead compared to the
original power calculation method.

D. Histogramming

Sometimes when simulating a design, a user may want to
record the power at meaningful time intervals, such as the
clock period of the design, so they can set up testbenches
that capture accurate per-cycle average, peak, and leakage
power in order to verify the behavior of the circuit. Power
calculation from static timing analysis does not provide any
detailed information as to how a circuit behaves cycle to cycle,
as it only provides a single power estimate. A histogram
feature was developed for IRSIM to address this concern,
which displays a range of power measurement counts gathered
over simulation time. This effectively captures the power
distribution of the circuit, allowing novel insights into circuit
activity. For instance, circuit designs whose power distribu-
tions exhibit a Gaussian distribution indicate that switching
transistors have an approximately even distribution from cycle
to cycle, while a bimodal power distribution may indicate a
switching activity between two different activity domains. The
tuned ring oscillator circuit (digital locked loop) in Figure 1
experiences an oscillation between a lower and a higher power
state as shown in Fig. 2, which is a histogram measuring
power every 10 ns for a total simulation time 50,000 ns. The
clearly bimodal distribution represents the system attempting
to keep the oscillator tuned by removing a stage from the ring
oscillator to speed it up (lower power state) or adding a stage
to the ring oscillator to slow it down (higher power state). This
sort of analysis can only be made with cycle-accurate dynamic
power simulation.

The following Tcl script is used to generate histogram data:

1000 T

900 -

800 -

700 -

600 -

500 -

Counts

400 -

300 -

200

100

0.8 0.82 0.84 0.86

Power (mW)

0.88

0.9

Fig. 2. Power histogram for digital ring oscillator

power <power/ground node (s)>

h <power node(s)>

1 <ground node>

vsupply <power node(s)> <voltage>
powlogfile /dev/null

powtrace =

powstep

powhist init <min> <max> <bins>
every <timestep> {powhist capture}
s <simulation time>

powhist print

IV. CONCLUSION

In this paper, we introduced the need for power analysis
tools for low-power chip design and discussed an open-source
solution and its features, both as a dynamic power analysis tool
and also as a digital logic simulator. In particular for the for-
mer, we introduce various command and file format additions
and modifications that allow users to visualize switching power
activity via histogramming, use input device parameter files
with more transistor types, and simulate circuits with more
than one power supply.

Future steps include modifying the delay and voltage com-
pute model to accommodate parasitic interconnect delays (as
from a SPEF for SDF format file), a relatively straightforward
addition to the circuit models in IRSIM and mostly a format
parsing problem.

REFERENCES

[1] A. Salz and M. Horowitz, “IRSIM: An Incremental MOS Switch-Level
Simulator,” 26th ACM/IEEE Design Automation Conference, 1989, pp.
173-178, https://doi.org/10.1145/74382.74412.

[2] Efabless. Caravel, 2021. URL https://github.com/efabless/caravel

[3] Open Circuit Design. IRSIM, 1989. URL http://opencircuitdesign.com/
irsim/

https://doi.org/10.1145/74382.74412
https://github.com/efabless/caravel
http://opencircuitdesign.com/irsim/
http://opencircuitdesign.com/irsim/

[5]
[6]
[7]

Open Circuit Design. Magic, 1983. URL http://www.opencircuitdesign.
com/magic/

Open Circuit Design. Open_PDKs, 2020. URL http://opencircuitdesign.
com/open_pdks/

R. Timothy Edwards. IRSIM, 2002. URL https://github.com/
RTimothyEdwards/irsim

UC San Diego VLSI CAD Laboratory. The OpenROAD Project, 2018.
URL https://theopenroadproject.org/

http://www.opencircuitdesign.com/magic/
http://www.opencircuitdesign.com/magic/
http://opencircuitdesign.com/open_pdks/
http://opencircuitdesign.com/open_pdks/
https://github.com/RTimothyEdwards/irsim
https://github.com/RTimothyEdwards/irsim
https://theopenroadproject.org/

	Introduction
	Background
	Simulation by Events
	Power Analysis

	Dynamic Power Analysis
	Existing Features
	Handling Multiple Device Types and Parameters
	Handling Multiple Power Domains
	Histogramming

	Conclusion
	References

