Accelerate Silicon Research with Jupyter Notebooks

Johan Euphrosine Google Tokyo, Japan proppy@google.com

Abstract—In this Work in Progress session we showcase our recent work to leverage Jupyter Notebooks and Conda packages to publish and share interactive silicon design experiments.

Notebooks published at github.com/chipsalliance/silicon-notebooks demonstrate how run a design experiment from design to gds using publicly-hosted notebooks without having to install any tool locally.

Additionally we show how those notebooks can be scaled on a public cloud provider to explore the parameters space of various silicon designs:

- We deploy an open source terraform solution published at <u>github.com/proppy/rad-lab</u> to provision jupyter notebooks with all the necessary tools pre-installed to model our experiments w/ design and flow parameters.
- Between each batch of experiments we report estimated performance metrics to a blackbox and hyperparameter optimization service (which has also an open source im plementation <u>github.com/google/vizier</u>) allowing it to suggest new parameters for future batches.
- We observe that the experiments quickly converge toward the best metrics for the given designs.
- Each of the jobs result in a standalone notebook allowing us to share, aggregate and reproduce every experiments.

Index Terms—silicon, notebook, eda, opensource

🗘 xls-playground-conda.ipynb

File Edit View Insert Runtime Tools Help

Copy to Drive

Staging | Switch to prod

🖙 Share 🏼 🎝

Connect 👻 🖌 Editing

:==

Q

 $\{x\}$

routing

+ Code + Text

- Input: Technology mapped netlist (Verilog), Physical layout with component cells placed (DEF)
- Output: Physical layout with component cells fully-connected (DEF)
- Metrics: Routing congestion, <u>timing closure</u> estimate

Documentation

[] !flow.tcl -design . -to routing

[INFO]: Preparing LEF files for the min corner... [INFO]: Preparing LEF files for the max corner... [STEP 1] [INFO]: Running Synthesis (log: runs/RUN_2022.09.30_11.18.24/logs/synthesis/1-synthesis.log)... [STEP 2] Running Single-Corner Static Timing Analysis (log: runs/RUN_2022.09.30_11.18.24/logs/synthesis/2-sta.log)... [INFO]: [STEP 3] [INFO]: Running Initial Floorplanning (log: runs/RUN_2022.09.30_11.18.24/logs/floorplan/3-initial_fp.log)... [WARNING]: Current core area is too small for a power grid. The power grid will be minimized. [INFO]: Extracting core dimensions... Set CORE_WIDTH to 38.64, CORE_HEIGHT to 27.2. TNE01 [STEP 4] Running IO Placement... [STEP 5] [INFO]: Running Tap/Decap Insertion (log: runs/RUN_2022.09.30_11.18.24/logs/floorplan/5-tap.log)... [INFO]: Power planning with power {VPWR} and ground {VGND}... TNF01 Generating PDN (log: runs/RUN 2022.09.30 11.18.24/logs/floorplan/6-pdn.log)... [STEP 7] Running Global Placement (log: runs/RUN_2022.09.30_11.18.24/logs/placement/7-global.log)... TNF01 [STEP 8] INF01 Running Placement Resizer Design Optimizations (log: runs/RUN_2022.09.30_11.18.24/logs/placement/8-resizer.log)... [STEP 9] TNE01 Removing Buffers from Nets (If Applicable) (log: runs/RUN_2022.09.30_11.18.24/logs/placement/9-remove_buffers.log)... [STEP 10] INF01: Running Detailed Placement (log: runs/RUN_2022.09.30_11.18.24/logs/placement/10-detailed.log)... STEP 111 Running Placement Resizer Timing Optimizations (log: runs/RUN_2022.09.30_11.18.24/logs/cts/11-resizer.log)... TNE01 [STEP 12] ... Removing Buffers from Nets (If Applicable) (log: runs/RUN_2022.09.30_11.18.24/logs/placement/12-remove_buffers.log)... [STEP 13] Running Global Routing Resizer Timing Optimizations (log: runs/RUN_2022.09.30_11.18.24/logs/routing/13-resizer.log)... [STEP 14] Removing Buffers from Nets (If Applicable) (log: runs/RUN_2022.09.30_11.18.24/logs/placement/14-remove_buffers.log)... [STEP 15] ..., Running Detailed Placement (log: runs/RUN_2022.09.30_11.18.24/logs/routing/15-diode_legalization.log)... [STEP 16] [INFO]: Running Global Routing (log: runs/RUN_2022.09.30_11.18.24/logs/routing/16-global.log)... [INFO]: Starting OpenROAD Antenna Repair Iterations... [STEP 17] INFO]: Writing Verilog (log: runs/RUN_2022.09.30_11.18.24/logs/routing/16-global_write_netlist.log)... [STEP 18] INFO]: Running Fill Insertion (log: runs/RUN_2022.09.30_11.18.24/logs/routing/18-fill.log)... [STEP 19] [INFO]: Running Detailed Routing (log: runs/RUN 2022.09.30 11.18.24/logs/routing/19-detailed.log)... [INFO]: No DRC violations after detailed routing. INF0]: Saving current set of views in 'runs/RUN_2022.09.30_11.18.24/results/final'... [INFO]: Saving runtime environment.. [INFO]: Generating final set of reports... [INFO]: Created manufacturability report at 'runs/RUN_2022.09.30_11.18.24/reports/manufacturability.rpt'. [INFO]: Created metrics report at 'runs/RUN_2022.09.30_11.18.24/reports/metrics.csv'. [INFO]: There are no max slew, max fanout or max capacitance violations in the design at the typical corner. [INFO]: There are no hold violations in the design at the typical corner. [INFO]: There are no setup violations in the design at the typical corner. [SUCCESS]: Flow complete. INEO1: Note that the following warnings have been generated: [WARNING]: Current core area is too small for a power grid. The power grid will be minimized.

Preview

C Show code Controls Hide Fill, Decap, Tap cells Hide top cell geometry Isolate mouse over cell View Settings ouse over: FILLER 7 39 (skv130 ef sc hd decap 12) toggleFillerCells toggleTopCellGeometry ubstrate ~ li1 1 mcon ~ met1 diff ~ poly ~ licon 1 via 1 met2 ~

0

1

via2

↑↓⇔‡↓∎ і

Explore design parameters space

with Cloud-based hyper-parameters tuning

Find best design parameters to **minimize power consumption**

Find best pipeline stages to maximize slack

