
A MLIR-Based Hardware Synthesis Framework
Ruifan Xu

Peking University
xuruifan@pku.edu.cn

Youwei Xiao
Peking University

shallwe@pku.edu.cn

Jin Luo
Peking University
luo-jin@pku.edu.cn

Yun Liang
Peking University

ericlyun@pku.edu.cn

Abstract—Hardware synthesis adopts a higher abstraction to
improve the productivity of hardware design. High-level synthesis
tools can automatically transform a high-level description into
hardware design, while hardware generators adopt domain-
specific languages and synthesis flows for specific applications.
However, the implementation of these tools generally requires
substantial engineering efforts due to RTL’s weak expressivity
and low level of abstraction. To lower the engineering cost and get
competitive hardware design rapidly, we build Hector, a two-level
IR providing a unified intermediate representation for hardware
synthesis methodologies. The high-level IR binds computation
with a control graph annotated with timing information, while the
low-level IR provides a concise way to describe hardware modules
and elastic interconnections among them. Implemented based on
the multi-level compiler infrastructure (MLIR), Hector’s IRs can
be converted to synthesizable RTL designs. Different hardware
synthesis approaches can adopt suitable levels of intermediate
representations (IR) and are well supported in Hector with
minimal engineering effort. The multi-level representation also
enables optimizations like pipeline, which is hard to support at
RTL.

Index Terms—intermediate representation, hardware synthesis

I. INTRODUCTION

Traditional hardware description languages (HDLs) includ-
ing Verilog [3] and VHDL [4] adopt a low level of abstraction,
which seriously hampers the productivity of hardware de-
sign. Hardware synthesis tools including high-level synthesis
(HLS) and hardware generators provide a higher abstraction
to get hardware design quickly. These synthesis tools often
adopt different synthesis methodologies. HLS compilers auto-
matically convert the high-level description into a hardware
implementation. HLS tools often take high-level languages
as inputs and reuse their compiler infrastructure for trans-
formations and optimizations. For example, Vitis HLS [9]
adopts LLVM IR [6] as its internal representation, which is
a widely used software compilation IR. After that, additional
passes are needed to convert to hardware semantics. Hardware
generators perform sophisticated architectural transformations
to improve performance and resource consumption. In ad-
dition to domain-specific optimizations, hardware generators
are often guided with specific hardware templates to generate
hardware implementation for different applications. Domain-
specific languages (DSL) and optimizations are often used for
description and optimization.

Both synthesis methodologies require substantial engineer-
ing efforts due to RTL’s weak expressivity and low level
of abstraction. The semantic gap between RTL and higher

HEC IR

TOR IR

SCF IRSoftware
Representation

Scheduling
Representation

Structural
Representation

Chisel VerilogOther
Backends

High-level
Language Systolic ArrayOther

Frontends

Fig. 1: Hardware synthesis flow built on the Hector.

abstraction further improves the difficulty of engineering,
because the lowering process should handle different levels
of information at the same time. However, these different
methodologies share some similarities in the intermediate
representations like control logic generation. The scheduling
step in HLS is implemented using different algorithms in-
cluding static, dynamic, and hybrid scheduling [8]. Differ-
ent hardware behaviors including pipeline and streaming are
also adopted in hardware generators. Furthermore, a multi-
level description also simplifies the generation process and
enables optimizations at different levels. Therefore, a unified
and multi-level IR makes it easier to design new hardware
synthesis techniques based on the same infrastructure and
explore different methodologies.

We propose Hector [5]1, a two-level IR providing a unified
description for different hardware synthesis methodologies
with expressivity and flexibility. The high-level IR (TOpo-
logical Representation) binds computations with a control
graph annotated with timing information, while the low-level
IR (Hierarchical Elastic Component) provides a concise way
to describe various hardware components and elastic inter-
connections among them using customizable primitives. Both
IRs provide a uniform representation of the control logic in
various manners but at different abstraction levels. The IRs in
Hector are converted to synthesizable RTL programs through a
series of transformations including time graph transformation,
lowering pass, and RTL generation. The two-level IR and

1Hector is open source at (https://github.com/pku-liang/Hector)

https://github.com/pku-liang/Hector

all the transformations are built on the multi-level compiler
infrastructure (MLIR) [1] (section II), which simplifies the
implementation and provides the opportunity of sharing op-
timizations at different levels. As shown in Figure 1, the pro-
posed IR (section III) together with a built-in dialect provides
the ability of describing hardware at software, scheduling and
structural levels. This multi-level description makes it easier to
design with multiple abstractions and get competitive hardware
design quickly. In addition, Hector provides optimizations like
pipeline (section IV) that can be easily reused in hardware
synthesis.

II. MLIR INFRASTRUCTURE

MLIR is a novel compiler infrastructure that provides pow-
erful scalability and modularity and aims at providing multi-
level IR. All the IRs in MLIR obey Static Single Assignment
(SSA) form and explicit type system. IR in MLIR is called
Dialect, which is a hierarchical structure template that is
shown as Figure 2c. This hierarchy supplies an expressive
representation, which makes it easy to implement a flexible
IR. The feature that region can also be nested in a opera-
tion provides enough semantic features including functional
programming and nested operation. Dialect can be seen as a
collection of user-defined operations and types, which makes
it easy to define a new language and implement a multi-
level IR. MLIR also provides several built-in Dialects, such as
SCF and Standard. SCF Dialect describes static control flow
in a higher level abstraction than jumping between different
blocks. This dialect prevents if and loop structure, which helps
analyze and optimize. Standard Dialect is a collection of basic
operations such as addition, comparison and function call.
These dialects can be used to describe a program at the same
time, which is also the feature provided by MLIR, called
progressive lowering.

tor.from 3 to 4 "seq:1"
1 2 3 5

(a) ToR operation in custom printing/parsing format.

%sum = tor.for %i = %lb to %ub step %step
on (0 to 5) iter_args(%sum_iter = %sum_0) {
tor.return %sum

} {strategy="static", pipeline="for", II=1}

8 6 7

6 7

4

(b) The ”tor.for” operation in internal representation.

tor.state @s0_wait {
// ^bb1(): ommited,single block has no arguments
tor.assign %r0.reg = %func.out if %func.done
tor.transition {
// ^bb1():
tor.goto @s1 if %func.done
tor.goto @s0_wait

}
}

Block
Region

Block
Region

9

9

(c) HEC operations in MLIR hierarchy structure.

1

2

3

4

5

6

7

8

9

Dialect prefix

Operation name

Integer attribute

Dictionary attribute

String attribute

Block argument

Operand

Result name

Symbol name

Fig. 2: Example HEC operations that make use of in MLIR

Figure 2 shows the detailed implementation of Hector IR,
which can be easily built on MLIR due to flexible representa-
tion. Each operation is composed of a prefix and operation

name, which is shown in Figure 2a. Figure 2b shows the
representation of a loop. This loop operation takes %lb, %ub
and %step as operands, and returns the value of %sum. The
iterative variable %i and accumulative result %sum_iter
are the block arguments of this operation, and the initial
value %sum_0 is also an operand. Besides basic operands and
results, operations may have attributes and regions. Figure 3b
shows the functional syntax of operations in ToR. There are
two regions in tor.if representing two branches separately.
The nested region is naturally supported in MLIR, which
enables the definition of state in Figure 2c. The timing
information, the binding of operations and the behavior of
a module are all implemented as attributes including integer,
string and directory.

III. HECTOR REPRESENTATION

Hector contains a two-level IR system, where ToR is
the high-level IR and HEC IR is the low-level IR. ToR IR
combines a software-like control flow with the schedule infor-
mation of each operation. HEC IR proposes an allocate-assign
mechanism to explicitly describe the relationship between
computation and compute units. Both IRs provide a uniform
representation of the control logic with various scheduling
manners such as static and dynamic. The main difference
between the two IRs is that ToR describes when the operation
begins, while HEC describes where it takes place. The two-
level representation makes it easy to implement different
synthesis methods. In this section, we present the details of
the IRs, ToR (TOpological Representation) at the high level
and HEC (Hierarchical Elastic Component) at the low level.

A. ToR IR

The software IR such as LLVM IR [6] lacks hardware
semantics. The idea of the high-level IR is to make it closer
to hardware by providing a directed graph that carries control
flow and timing information and binding software operations
to elements of the graph. ToR is composed of two parts,
topology and functional operations.

tor.topo (0 to 7) {
tor.from 0 to 1 "seq:1"
tor.from 1 to 2 "seq:1"
tor.from 2 to 3 "call"
tor.from 1 to 4 "seq:2"
tor.from 3, 4 to 5 "if"
tor.from 5 to 6 "seq:1"
tor.from 0 to 7 "for"

}

0 1

2

4

3

5 6

7

1
1

2

@f
if

if 1

(a) ToR Topology

tor.for %i = %c0 to %c10 step %c1 {
%m = tor.load %mask[%i] on (0 to 1)
%a = tor.if %m then {

%x = tor.addi %i %c1 on (1 to 2)
%y = tor.subi %i %c1 on (1 to 2)
%fx = tor.call @f(%x, %y) on (2 to 3)
tor.yield %fx

} else {
%ii = tor.muli %i %i on (1 to 4)
tor.yield %ii

} on (1 to 5)
tor.store %a to %A[%i] on (5 to 6)

} on (0 to 7)

(b) Functional Operation

Fig. 3: The design of ToR IR. ToR IR consists of topology and
functional operations. In (a), topology describes the time graph
with supplementary information on edges, where all edges and
nodes are set ”static” as default. In (b), functional operations
are bound on the graph.

Topology describes a time graph, which is a directed graph
describing control flow and timing information. Topology
includes a tor.topo (x to y) operation, which indi-
cates the source node x and sink node y, respectively. The
tor.from operations inside tor.topo specify edges of the
time graph. Attributes add supplementary information such as
latency and scheduling manners to the time graph. There are
four types of nodes in the time graph. Normal node for a
sequential edge, call node for a function call, if node with
two edges, and loop node with a loop body and loop back
edge. The type of each node on the time graph is determined
by the operation binding. The combination of these four node
types is capable of describing the schedule at high-level.

Three scheduling manners: static, pipeline, and dynamic,
are supported in ToR. Pipelining is a key optimization tech-
nique to improve throughput. ToR supports pipelining by
aligning branches of all if operations and adding pipeline
and II attributes to modules. Topology also supports dynamic
behavior that resolves conflicts at run-time. Stalling occurs
only when the conflict occurs, avoiding the conservative as-
sumption of static behaviors. This unified representation makes
it easier to transform among different behaviors.

Functional operations present the algorithmic specification
with high-level control flow semantics (e.g., if, for, and while).
It binds each operation to some element of the time graph,
either a node or an edge. To be specific, general operations
(computation, memory access, function call) are bounded
on edges, while if/loop operations are bounded on nodes.
Figure 3 illustrates an example of ToR IR. The time graph
in (a) contains a loop, which is composed of two branches
1 → 2 → 3 and 1 → 4. There is also a function call on the
edge 2 → 3, and the loop exits at the edge 0 → 7. Figure 3b
shows the functional operations which are bounded on the time
graph. For example, the tor.for operation is bounded on
node 0, and the tor.muli is bounded on edge (1 to 2).

B. HEC IR

HEC IR describes hardware with different manners in a uni-
fied allocate-assign mechanism. Allocation explicitly defines
all function units and sub-modules on the datapath, and the
signals of these units are determined through assignments.
The allocate-assign mechanism omits the insertion of the
multiplexer, simplifying the assignment of signals.

//Allocations
%m.lhs, %m.rhs, %m.res =

hec.primitive "m" is "muli" : i32, i32, i32
%i = hec.wire "i" :i32
//Assignments
hec.assign %m.lhs = %0
hec.assign %i = %m.res if %valid

Compared with ToR, HEC works at a level much closer to
hardware. It explicitly describes the resource usage (including
registers, memory, and compute units). Corresponding to the
different behaviors in ToR: static, pipeline and dynamic,
a HEC design is composed of three types of components
matching their manners.

hec.component @STG(%c, %d, %f) {
... // Allocations
stateset {

state @s0{
assign %addf.op0 = %c
assign %reg0 = %addf.result
transition {

goto @s1 if %d
}

} //other states
}

} {"STG"}

HEC describes a static module in a state transition graph
(STG) style. The hec.stateset operation defines a set
of states. Inside each state @sx, hec.assign operations
specify the signal delivery among the allocated resources.
Such representation naturally supports fine-grained paral-
lelism. There is also a tor.transition operation in every
state, specifying which state the control is transferred to,
either unconditionally or based on guard signals. Based on
the allocate-assign mechanism, it is convenient to describe
resource sharing in an STG-style component by simply feeding
signals into the shared resources (either registers or compute
units) inside different states. Other two style components:
pipeline and handshake have similar representations except the
control logic.

IV. PIPELINE OPTIMIZATION

Transformation and optimization are implemented as passes
in the MLIR infrastructure. The multi-level representation
simplifies the implementation of optimizations like pipelining.
Pipeline optimization constructs a cycle-sensitive multiple-
stage component, where each node of the time graph in
the original ToR function is allocated to a definite stage
according to its distance from the source node. The pipeline
structure requires that every path from the source node to a
specific time node must have the same length, which serves
as the prerequisite of the pipeline’s stability. As shown in the
Figure 4, pipeline generation pass has four steps:

a) Stage division: The generator traverses the time graph
of the operated ToR function and calculates the “distance” of
each node from the source node. The “distance” is indicated
by “#cycle” attributes of every time edge composing the path
from the source node to the current node. The time nodes with
the same “distance” will be placed in one stage. Each stage
responds to a clock cycle, on which the allocated time node
starts the execution of the operations whose start time is set as
the current node. As shown in the left figure of Figure 5a, the
stage number and the distance from the source node strictly
match for every node on the time graph.

b) Register Allocation and Binding: Each SSA-formed
value in the ToR function has one def and several uses, and
values with no use are optimized by dead code elimination
pass. The value must be stored for pipelining usage after its
def until the last use, so assuming that the value is defined
at the sth stage, and used at the tth stage for the last time,
t− s registers have to be allocated, each of which is bound to

ToR pipeline HEC pipelineStage Division
Register

Allocation &
Binding

Compute Unit
Allocation &

Binding
Stage Packing

Fig. 4: Pipeline generation flow.

0 1

2

3 4

5
[2]

[1]

[1] [1]

[2]

[1]

C0 C1 C3C2 C4

(a) Divided stages for
pipeline generation.

0 1

2

3 4

5

C0 C1 C3C2 C4

b0 b1

Def b

Use b

(b) Registers allocated for a
value on divided stages.

Empty A B C D E F G

 A B C D E F G

 A B C D E F G

 A B C D E F G

shift_reg

start
shift_reg
is empty?

update
shift_reg

(c) Pipeline states composed of stacked stages.

Fig. 5: Stages and states for pipelining.

a value edition in a certain middle stage. As the right figure
of Figure 5b shows, value b is defined at stage C1 and lastly
used at stage C3, and two registers are allocated and store b’s
data between C1, C2 and C2, C3 individually.

c) Compute Unit Allocation and Binding: Each compute
operand in ToR dialect, including integer addition, integer
multiplication, etc., corresponds to a specific compute unit
in HEC primitives and hardware implementation. The divided
stages are overlapped due to the profiling initiation interval,
and the compute units on any overlapped stage conflict with
each other. Resource sharing happens among compute units
of the same kind with no conflicts. A compute unit that is
shared by several uses will be allocated only once, then it
will be bound to those conflict-free uses by appropriate signal
assignment operation in HEC dialect.

d) Stage Packing: Each pipeline state is composed of
stacked pipeline stages due to various initiation interval (II).
For a pipelining loop or function with initiation interval
II , II stages are constructed. For example, as shown in
Figure 5c, two states, marked as α =< A,C,E,G > and
β =< B,D,F,Empty >, are generated for a pipelining loop
with II = 2, and a shift register of size ⌈#stages

II ⌉ is allocated
for control of the execution of each stage stacked in a state.
Finally, the partial state transition solution is generated.

Due to the unified description of HEC, the generation of
pipeline only considers about all the stages and resources
for each operation. The implementations of control logic like
a finite state machine and shift register are omitted in the
representation.

V. FUTURE WORK

We aim at improving the infrastructure of Hector at present.
First, we plan to build necessary tools including simulation and
verification at different levels, which can significantly improve
the robustness and convenience of Hector. We also plan to
integrate Hector with CIRCT [2] infrastructure, an open-
source hardware compiler infrastructure. Because CIRCT is
also built on the MLIR, the implementation of Hector IR and
internal passes can be simply shared by CIRCT. We will insert
conversions between Hector and CIRCT for extensibility and
reusability. To avoid extra compilation of Chisel programs, we
should replace Chisel generation with a translation pass to the
FIRRTL [7] IR which is a CIRCT dialect of IR in Chisel.
Finally, we plan to implement some real-world accelerators
like sparse matrix-vector multiplication (SPMV) to prove the
effectiveness and convenience of Hector.

VI. CONCLUSION

Hector is a two-level IR providing a unified description
for different synthesis methodologies. Through a series of
transformations and optimizations based on the MLIR in-
frastructure, Hector’s IRs are finally converted to synthe-
sizable RTL programs. The multi-level description enables
optimization passes like pipelining that can be easily reused by
hardware synthesis methodologies. Moreover, the open-source
framework provides enough flexibility to customize synthesis
approaches and allows users to explore advanced techniques.

REFERENCES

[1] C. Lattner et al. “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation”. In: 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO).

[2] The CIRCT authors, “CIRCT: Circuit IR compilers and tools,” 2022,
https://github.com/llvm/circt.

[3] IEEE. 1364-2005. Standard for Verilog Hardware Description Language.
[4] IEEE. 1076-2008. VHDL Language Reference Manual.
[5] Ruifan Xu et al. “HECTOR: A Multi-level Intermediate Representation

for Hardware Synthesis Methodologies”, to appear in the proceeding
of the International Conference on Computer Aided Design (ICCAD),
Nov. 2022.

[6] C. Lattner et al. “LLVM: a compilation framework for lifelong program
analysis & transformation.” In: 2004 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO).

[7] A. M. Izraelevitz et al. “Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and transformations,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017

[8] Jianyi Cheng et al. 2020. Combining Dynamic & Static Scheduling
in High-Level Synthesis. In Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Seaside,
CA, USA) (FPGA ’20).

[9] Xilinx. 2021. Vitis High-Level Synthesis. Retrieved March 7, 2021 from
https://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html

	Introduction
	MLIR Infrastructure
	Hector Representation
	ToR IR
	HEC IR

	Pipeline optimization
	Future work
	Conclusion
	References

