SODA Synthesizer: an Open-Source, End-to-End
Hardware Compiler

Nicolas Bohm Agostiniﬂ, Serena Curzel®*, Ankur Limayei, Vinay Amatyai, Marco Minutoli¥,
Vito Giovanni Castellana®, Joseph Manzano?, Fabrizio Ferrandi®, Antonino Tumeo!
j;Paciﬁc Northwest National Laboratory, Richland, WA, USA
tNortheastern University, Boston, MA, USA
§ Politecnico di Milano, Milan, Italy

Abstract—Enabling autonomous control in novel scientific
experimental workflows requires the ability to generate highly
specialized systems for data analysis and artificial intelligence,
enabling the low-latency reasoning capabilities needed to take
real-time decisions. This paper presents the SODA (Software De-
fined Accelerators) framework, an open-source modular, multi-
level, no-human-in-the-loop, hardware compiler that enables end-
to-end generation of specialized accelerators from high-level
data science frameworks. SODA is composed of SODA-Opt,
a high-level frontend developed in MLIR that interfaces with
domain-specific programming environments and allows perform-
ing system level design, and Bambu, a state-of-the-art high-level
synthesis (HLS) engine that can target different device tech-
nologies. The framework implements design space exploration
as compiler optimization passes. We show how the modular,
yet tight, integration of the high-level optimizer and lower-level
HLS tools enables the generation of accelerators optimized for
the computational patterns of converged applications. We then
discuss some of the research opportunities that such an open-
source framework allows.

I. INTRODUCTION

Emerging scientific applications, including network (power
grid, communication, transportation, etc) analysis, environ-
mental monitoring, high energy physics, material synthesis,
and, in general, experimental scientific workflows, require
efficient processing of a combination of data analysis, machine
learning (ML), and scientific computing algorithms. Systems
for all these areas need to analyze in-situ continuous streams
of multi-modal data and take decisions in real-time to enable
autonomous control of the experiments at very different scales.
Achieving all the metrics that these diverse edge systems need
to meet in terms of energy, performance, area, size and latency,
is only possible through domain-specialized accelerators.

Domain scientists design and validate their algorithms in
high-level programming frameworks, most of which are based
on Python. Both algorithmic methods and programming frame-
works are evolving quickly, especially in the data science area,
making it extremely difficult to design specialized accelerators
that are efficient with new approaches. In fact, the conven-
tional hardware design cycle presents significant productivity
limitations, often requiring an entire new design cycle each
time new algorithms or models appear and preventing a wide
exploration of alternative architectures.

The typical process requires hardware designers to distill
key computational patterns from the algorithms that need to be

accelerated, identify parallelism and data reuse opportunities,
and design by hand custom functional units for specific kernels
at the register-transfer level (RTL) with an HDL. A common
alternative is to implement the functional units in C/C++ and
convert them to HDL through commercial High-Level Synthe-
sis (HLS) tools (Vitis HLS, Catapult C or Stratus HLS). In both
cases, after functional verification, the HDL kernels are passed
to downstream logic synthesis and physical design tools, and
finally integrated into a system. This kind of design flow that
combines manual coding with some automated processing is
the standard practice for designing hardware. However, it still
requires tremendous effort, and the quality highly depends on
the designers’ expertise. Moreover, the interactions between
multiple Computer-Aided Design (CAD) tools at different
levels of abstractions make the design process tedious and
error-prone, introducing significant verification overheads and
forcing manual propagation of changes across different stages
of the design flow.

To address these issues, we introduced the SODA (Software
Defined Accelerators) Synthesizer, an open-source, modular,
and extensible end-to-end hardware compiler for the gen-
eration of highly specialized accelerators from algorithms
designed in high-level programming frameworks. SODA is
composed of a compiler-based frontend, to interface with
high-level programming frameworks and apply high-level op-
timizations, and a compiler-based backend, to generate Verilog
code and interface with external tools that compile the final
design (either application-specific integrated circuits - ASICs
- or field programmable gate arrays - FPGAs). The frontend,
SODA-OPT! [1], is implemented with the MLIR compiler
infrastructure, while the backend leverages a state-of-the-art
HLS tool, Bambu [2], from the Panda framework?. Differ-
ently from other frameworks that use HLS, the interaction
between frontend and backend happens through specialized
compiler intermediate representations (IRs) and their progres-
sive lowerings. Such a modular, yet tight, integration, allows
performing optimizations at the right level of abstractions, and
pursuing new research opportunities by adding new compiler
representations and passes.

'SODA-OPT is available at: https://gitlab.pnnl.gov/sodalite/soda-opt
2Bambu is available at: https://panda.dei.polimi.it

High-Level
Framework |

psL | | ML Model “§° |
| Translate to MLIR IR |

Synthesizer

| Frontend:
SODA-OPT |

Design Space
Exploration

Resource Library

|
|
Backend: :« Templates
|
|
|

HLS

A

Constraints

not

LLVM Tools

Execulab\ea

Processor
a

|

| |
| i 1
1 i |
| I I
| v : | | Analysis & low-level optimization | |
: | Search & Outline kernel functions | 1 : :
| I v v I
| v 11 - 1
| | MLIR and SODA Dialects | 11 Allocation |
[} I Template I
: v : I'[| Scheduling based 1
1 | Isolate Kernel & Host Code | 1 : synthesis :
| < I 1
| I |
| MLIR Kernel MLIR Host I | I
| Code Code I 1
| v v 11 1
| - X | Modules (RTL IR) |]
| Analysis & Convert SODA || | |
| high-level Operationsto | 1 | ‘ |
I optimization Runtime : | |
: 1 : | System (RTL IR) | :
| I ‘ I
|| Low-Level IR Low-Level IR |1 | |
: I I : : | Verilog and Testbench {él} :
| 1|

| | Translate to LLVM IR | e !
e Syt

Fig. 1: The SODA framework is an open-source, multi-level, modular, extensible, hardware generator composed of a high-level

compiler and a lower-level HLS backend

II. THE SODA FRAMEWORK

Figure la provides an overview of the SODA framework,
which can be divided in two parts: the frontend and the
hardware generation engine. The framework accepts input
descriptions from high-level Python frameworks, translated
by the frontend into a high-level intermediate representa-
tion (IR). The frontend exploits the Multi-Level Intermedi-
ate Representation (MLIR) [3] to perform hardware/software
partitioning of the algorithm specifications and architecture-
independent optimizations. Subsequently, it generates a low-
level IR (LLVM IR) for the HLS engine, PandA-Bambu [2],
a state-of-the-art open-source tool which, differently from
most commercial alternatives, can also accept LLVM IR as
input. Optimizations at all levels of the SODA toolchain are
implemented as compiler passes, significantly influencing the
generated hardware designs in terms of performance, area, and
power. An exhaustive exploration of the design space is made
possible by enabling and disabling compiler passes or tuning
their options.

A. SODA-OPT Frontend

SODA-OPT (Figure 1b) is the high-level compiler frontend
of the SODA framework. It performs search, outlining, op-
timization, dispatching, and acceleration passes on the input
program, preparing it for hardware synthesis targeting FPGAs
or ASICs. SODA-OPT leverages the MLIR framework.

MLIR is a framework that allows building reusable, ex-
tensible, and modular compiler infrastructure by defining
dialects, i.e., self-contained IRs that respect MLIR’s meta-IR
syntax. Dialects allow modeling code at different levels of
abstraction, enabling the use of specialized representations to
facilitate compiler optimizations. Several dialects of general
use are maintained along with the MLIR framework. We refer

to these as built-in dialects. They include abstractions for
linear algebra, polyhedral analysis, structured control flow, and
others. Several high-level programming frameworks for vari-
ous domains such as machine learning (TensorFlow, ONNX-
MLIR, TORCH-MLIR), scientific computing (NPCOMP), and
general purpose languages (e.g., the FLANG frontend for
Fortran) started leveraging MLIR to implement their own
specific dialects, optimizations passes, and lowering methods
to translate their programs into built-in MLIR dialects. Built-
in dialects are entry points to SODA, enabling high-level
programming frameworks to integrate with our toolchain.

SODA-OPT introduces a custom dialect to partition input
applications into an orchestrating host program and custom
hardware accelerators. SODA-OPT passes ingest MLIR inputs
from high-level frameworks, identify key code regions, and
outline them into separate MLIR modules. Code regions that
are selected for hardware acceleration undergo an optimization
pipeline with progressive lowerings through different MLIR
dialects (1inalg — affine — scf — ¢f — 11vm), until
they are translated into an LLVM IR restructured for hardware
synthesis. Instead, the host module is lowered into an LLVM
IR file that includes runtime calls to control the generated
custom accelerators.

SODA-OPT performs the following high-level optimizations
at the affine or lower dialects: tiling, unrolling, temporary
buffer allocation, alloca buffer promotion, scalar replacement
of aggregates (SRoA), early alias analysis, common sub-
expression elimination (CSE), and dead code elimination
(DCE). When properly combined together, these optimizations
provide several benefits to the HLS backend, including: easier
operation scheduling, increase of instruction-level and data-
level parallelism, reduction of the number of accesses to
external memory, favoring reuse of previously read values

No Optimizations

Optimizations

Kernel Cycles Area(um™2) GF/W Cycles Area(um™) GF/W Speedup
CONV_01 10,262,618 29,073 4.43 4,627,982 124,255 2.68 2.22
BIAS_02 251,694 10,395 11.48 40,826 60,048 9.01 6.17
RELU_03 151,342 7,385 41.55 38,446 35,695 38.39 3.94
CONV_04 85,380,948 36,814 3.32 83,380,180 37,556 3.34 1.02
BIAS_05 62,932 10,409 11.00 10,222 60,007 8.41 6.16
RELU_06 37,844 7,464 41.75 9,620 35,950 37.04 3.93

TABLE I: Evaluation of non optimized and optimized LeNet operators in ASIC technology (FreePDK 45 nm at 500 MHz)

(storing them in registers), aggregation on local registers
instead of external memory accesses, concurrent scheduling of
independent memory operations on arrays, removal of redun-
dant or unnecessary operations improving resource utilization.

Traditional HLS design flows expect manual code mod-
ifications that restructure the original algorithm (to create
internal buffers or apply profitable tiling strategies) or tool-
specific pragma annotations (to guide unrolling or provide
alias information). Instead, SODA-OPT exploits dedicated and
context-specific MLIR dialects to apply systematic high-level
transformations. These can expose instruction- and data-level
parallelism, perform loop transformations, and apply various
other steps such as buffer hoisting or accumulation on tem-
porary variables. SODA-OPT leverages the 1inalg dialect
to identify operations and separate hardware and software
partitions, then it optimizes loops through the a £ f ine dialect,
and finally performs CSE, DCE, and SRoA optimizations
through the cf, arith, and memref dialects.

B. SODA Synthesizer Backend

The SODA framework backend, shown in Figure lc, is
Bambu, a state-of-the-art HLS tool that generate the accel-
erators designs starting from the low-level LLVM IR pro-
duced by SODA-OPT. Bambu has several frontends based on
standard compilers (GCC or CLANG), it builds an internal
IR to perform HLS steps (including bitwidth analysis, loop
optimizations, resource allocation, scheduling, and binding al-
gorithms), and generates the designs in a hardware description
language (Verilog or VHDL). Alongside synthesizable HDL,
it can also automatically produce testbenches for verification.
Bambu enables SODA to target FPGAs (from Xilinx, Altera,
Lattice, NanoXplore) and ASICs. For ASICs, SODA supports
Verilog-to-GDSII generation with both commercial (Synopsis
Design Compiler) and open-source (OpenROAD flow) logic
synthesis and phisical layout tools.

Bambu is optimized to support a wide set of C and C++
constructs, but it can also ingest LLVM IR through its internal
Clang frontend; through SODA-OPT, we connect Bambu with
MLIR code. The LLVM IR generated after SODA-OPT high-
level optimizations is restructured for HLS, resulting in more
efficient accelerators with respect to inputs directly translated
from MLIR to LLVM IR.

Bambu generates designs at the register transfer level (RTL)
following the finite state machine with datapath (FSMD)
model; the accelerators can subsequently be integrated in
larger system-level designs, with or without microcontrollers
driving the execution. Bambu also exposes modular synthesis
methodologies [4]: differently from other HLS tools, it can

generate modules representing functions that may be reused or
replicated across an entire design and composed in a complex
multi-accelerator system.

We have extended Bambu with new HLS methodologies
that can integrate FSMD modules as processing elements in
coarse-grained dataflow designs [5], and in high-throughput,
dynamically scheduled, multithreaded parallel templates [6].
MLIR descriptions are naturally parallel and hierarchical,
making possible to instantiate such architectural templates
from SODA-OPT. Rather than requiring manual annotations on
the input code, we can define the design hierarchy at a higher
level of abstraction by exploiting MLIR.

III. SYNTHESIS EXAMPLE

To demonstrate SODA end-to-end synthesis capabilities, we
automatically translate a LeNet model trained in TensorFlow to
the 1inalg dialect and employ SODA-OPT to search, outline,
and optimize different regions of the network. The optimized
LLVM IR generated by SODA-OPT is then passed down to
Bambu to generate the different specialized accelerators. Table
I reports the evaluation of the SODA implementations of
different layers from the LeNet convolutional neural network
model, synthesized with the OpenROAD flow targeting the
FreePDK 45 nm cell library and a frequency of 500 MHz.
The HLS process is specifically optimized for the target tech-
nology beforehand, by performing resource characterization
and extraction of metrics that are then used to drive the
execution of the HLS algorithms. All accelerators employ 32-
bit floating point units. Optimizations provide a performance
increase (speedup) proportional to the increase in area. Power
efficiency (GF/W) may slightly reduce due to increase in
power consumption of the faster solutions.

gl Q -

I

g1

S p—

o I

A ﬁ%‘: e

silgf W ‘] .

FHGS .

< ==

- CONVO1 BIASO2 RELUO3 | CONV04! BIASO5 RELUO6

——— ———
———— 7 TT=A
H SODA Optimized

= i * Careful selection of tile size T

< _% iy enables accelerator reuse ép;?ﬂ paee

k] 5 ;i ! by multiple operators v R

g U <f | ¢ A4xthe area, 15x speedup |-

j 3 :: i * Automatically selected and

IS ; - i generated

h

Fig. 2: ASIC implementations of LeNet layers.

Figure 2 shows the layouts (extracted from the standard
GDSII format for ASIC manufacturing) at the end of the entire
SODA flow for each different layer in Table I, without and
with high-level optimizations. We can visually see how the
optimized, and faster, designs, occupy a larger area of the die.

IV. RESEARCH OPPORTUNITIES

An open-source, modular compiler infrastructure provides
several research opportunities. SODA-OPT already enables
system level design. In fact, it can perform code partitioning,
high-level optimizations for custom hardware generation, and
composition of an entire system architecture by generating
glue code for control processors or by assembling accelerators
in dynamically scheduled architectures. Such an approach
could be further extended by integrating with rapid prototyping
platforms in the open-source hardware ecosystem, such as
the Embedded Scalable Platforms (ESP) [7]. Specifically,
Bambu could provide an open-source synthesis backend for
custom accelerators to ESP, while SODA-OPT could drive the
system design, leveraging the rich set of services offered
by ESP to invoke the accelerators. From a more general
point view, SODA-OPT could easily support other types of
specialized accelerators beside general purpose processors
and HLS generated accelerators. A multi-level retargetable
compiler framework provides opportunities to couple static
with dynamic analysis, enabling to capture information on
data-dependent patterns (typically involving memory accesses)
through automated instrumentation and profiling that could
then be feed back to the hardware generation engine to
facilitate the exploration of the memory hierarchy and overall
architecture design [8]. As presented in [9], the modularity
of the framework even allows supporting novel computing
paradigms, such as spiking neural networks. We have designed
a new MLIR dialect to perform conversion and mapping of
artificial neural networks on spiking neural networks. Digital
versions of spiking neurons can then be synthesized through
Bambu, enhancing what is currently done by hand with other
FPGA platforms and HLS tools. An additional opportunity for
SODA is to integrate with open-source tool that allow creating
domain-specific FPGAs. SODA could, in fact, integrate with
solutions like OpenFPGA [10], performing high-level analysis
to identify patterns that might require additional hard macros
in the hardware substrate while still leveraging fine-grained
reconfigurability. The HLS backend could perform design
space exploration, leveraging the hard macros through the
resource library, or even synthesizing such macros. SODA
would then be able to automatically provide the domain-
specific FPGA organization and generate it using the logic
synthesis and physical layout tools. Integration with domain-
secific FPGAs allow exploring aspects such as custom memory
interfaces, or new macros (containing for example memristors)
that could simplify implementation of spiking neurons.

V. CONCLUSIONS

This paper overviews the SODA framework, an end-to-end,
multi-level, open-source, hardware compiler composed of a

frontend based on the MLIR infrastructure and a backend
leveraging a state-of-the-art HLS engine. Through its fron-
tend, SODA interfaces with a variety of high-level productive
programming frameworks employed by domain scientists for
novel “converged” applications. Through its backend, it can
generate complete hardware designs targeting FPGAs from
different vendors and ASICs. The end-to-end nature of the
framework provides the agility needed to go from algorithmic
formulation to hardware implementation. Its modularity and
extensibility, coupled with its open-source nature, provide fun-
damental components to enable democratization of hardware
design as well as unique research opportunities.

ACKNOWLEDGMENTS

This research was partially supported by the Software
Defined Accelerators for Data Analytics (SO(DA)?) project
in the Data Model Convergence (DMC) Initiative under
the PNNL’s Laboratory Directed Research and Development
(LDRD) program, the Defense Advanced Research Projects
Agency’s (DARPA) Real-Time Machine Learning (RTML)
program, and the Department of Defense / Department of
Energy P38 project.

REFERENCES

[1] N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G.
Castellana, J. Manzano, D. Kaeli, and A. Tumeo, “An mlir-based
compiler flow for system-level design and hardware acceleration,” in
ICCAD ’22: 41st IEEE/ACM International Conference on Computer-
Aided Design, 2022, p. To appear.

[2] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito,
M. Lattuada, M. Minutoli, C. Pilato, and A. Tumeo, “Bambu: an open-
source research framework for the high-level synthesis of complex
applications,” in DAC: 58th Design Automation Conference, 2021, pp.
1327-1330.

[3] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in CGO:
International Symposium on Code Generation and Optimization, 2021,
p. 2-14.

[4] M. Minutoli, V. G. Castellana, A. Tumeo, and F. Ferrandi, “Inter-
procedural resource sharing in high level synthesis through function
proxies,” in FPL 2015: 25th International Conference on Field Pro-
grammable Logic and Applications, 2015, pp. 1-8.

[5] V. G. Castellana, A. Tumeo, and F. Ferrandi, “High-level synthesis
of parallel specifications coupling static and dynamic controllers,” in
IPDPS ’21: IEEE International Parallel and Distributed Processing
Symposium, 2021, pp. 192-202.

[6] M. Minutoli, V. Castellana, N. Saporetti, S. Devecchi, M. Lattuada,
P. Fezzardi, A. Tumeo, and F. Ferrandi, “Svelto: High-level synthesis
of multi-threaded accelerators for graph analytics,” IEEE Transactions
on Computers, no. 01, pp. 1-14, 2021.

[71 P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile soc devel-
opment with open esp,” in 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD). 1EEE, 2020, pp. 1-9.

[8] A. Tumeo, “Architecture independent integrated early performance and
energy estimation,” in IGSC ’17: Eighth International Green and Sus-
tainable Computing Conference, 2017, pp. 1-6.

[9] S. Curzel, N. Bohm Agostini, S. Song, I. Dagli, A. Limaye, M. Minutoli,

V. G. Castellana, V. Amatya, J. Manzano, A. Das, F. Ferrandi, and

A. Tumeo, “Automated generation of integrated digital and spiking

neuromorphic machine learning accelerators,” in ICCAD: International

Conference On Computer Aided Design, 2021, pp. 1-7.

X. Tang, E. Giacomin, A. Alacchi, B. Chauviere, and P.-E. Gaillardon,

“Openfpga: An opensource framework enabling rapid prototyping of

customizable fpgas,” in 29th International Conference on Field Pro-

grammable Logic and Applications, ser. FPL’19, 2019, pp. 367-374.

[10]

