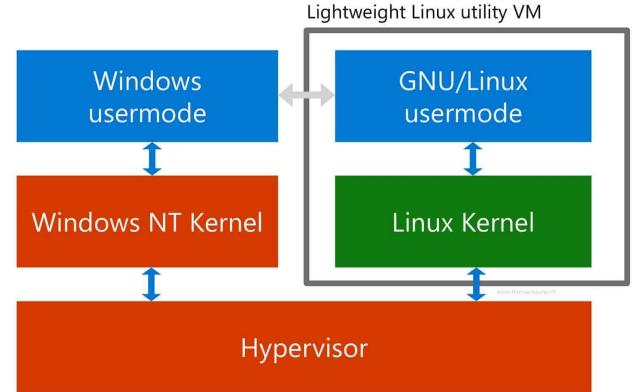
ACCESSIBILITY OF CHIP DESIGN TO THE NON-PROFESSIONAL

Alex Goldstein (<u>Alex_Goldstein@outlook.com</u>), Tim Edwards, Ph.D. (<u>tim@opencircuitdesign.com</u>)

Project Overview

01


Design a microchip that will fulfill a certain purpose and detail its functionality in Verilog Code

02

Create a potential chip layout to be fabricated using the OpenLANE software 03

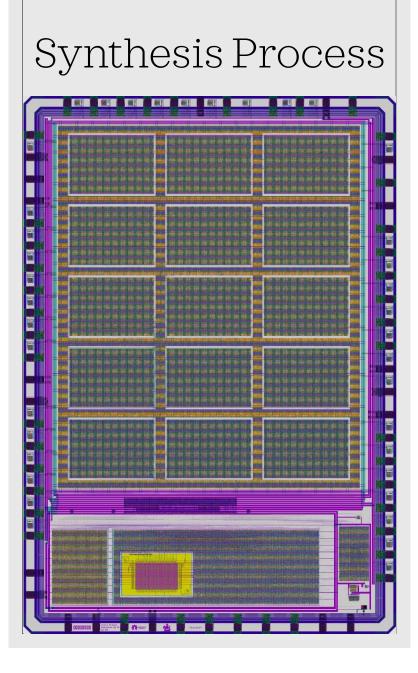
Submit the chip layout to the Efabless Open MPW 7 Shuttle to be fabricated

WSL 2 architecture overview

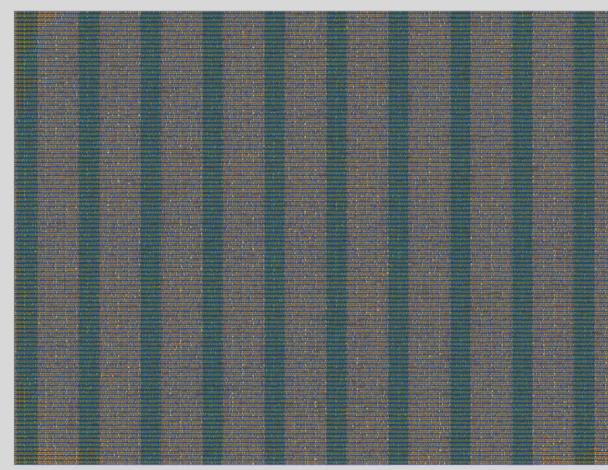
Setting Up the Synthesis Environment

- OpenLANE only runs in a Unix-based environment
- About 80% of home computers run Windows
- We can get around this by utilizing the "Windows Subsystem for Linux (WSL)"

What About Dependencies?

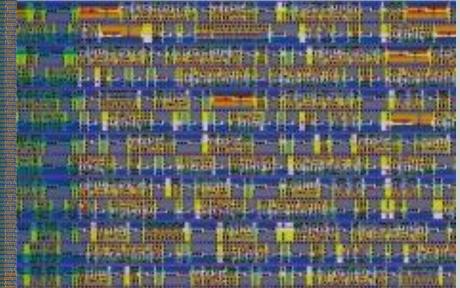

- Almost all of the Dependencies can be installed as normal through the terminal
- The Docker Daemon cannot be run in the terminal on its own
- The Docker Desktop Application allows us to still use the daemon through the engine's WSL 2 Integration

Settings	5					
	General			WSL Integration		
0	Resources	(Configure which WSL 2 distros you want to access Docker from.			
	Advanced		Z Enable interpretenting	egration with my default V	VSL distro	
	Proxies	E	Enable integra	tion with additional distro	s:	
	Network		Ubuntu	-20.04		
	WSL Integration	ſ				
-	Docker Engine	l	Refresh			
È.	Experimental features					
۲	Kubernetes					
Ð	Software updates					
*	Extensions					
				Canc	el Apply & Restar	t
		RAM 3.17GB	CPU 0.07%	🖹 Not connected to Hub		v4.12.0


\$ gh repo clone

AlexanderJGoldstein/chaos_automaton_Summer_2022 -- -depth=1

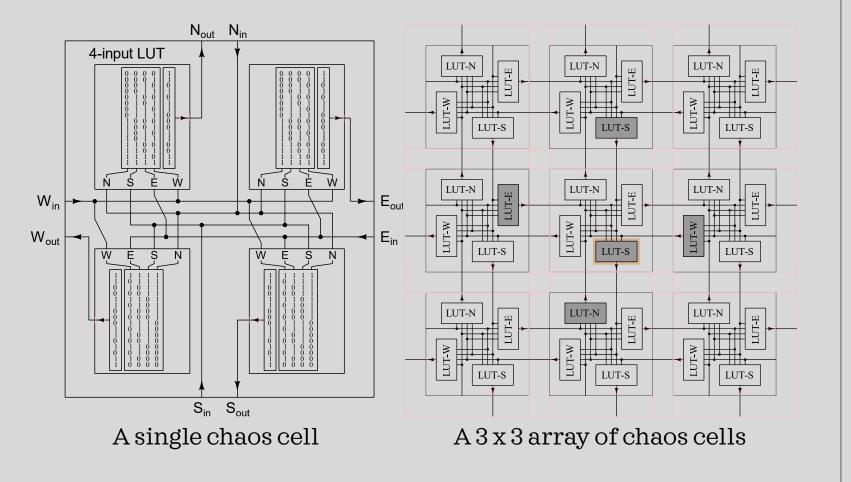
- \$ cd chaos_automaton_Summer_2022
- \$ mkdir dependencies
- \$ export OPENLANE_ROOT=\$PWD/dependencies/openlane_src
- \$ export PDK_ROOT=\$PWD/dependencies/pdks
- \$ export PDK=sky130B
- \$ make setup
- \$ make chaos_subarray
- \$ make user_project_wrapper
- \$ make ship



The Final Design

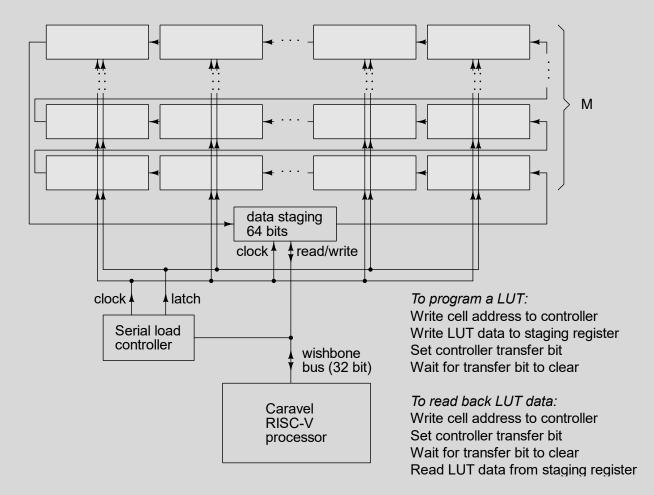
• 3 by 5 array of subarrays (15 total)

- Each subarray is a 10 x 6 array of chaos cells (60 per subarray)
- $\circ~$ There are 900 chaos cells in total!
- 63.68% Utilization



The final layout for a single completed subarray

A close-up of 0.4% of the subarray (25,000% magnification)


What is this "Chaos Automaton?"

- A large array of interconnected LUT chips
- The array (apart from programming) is completely asynchronous

What is this "Chaos Automaton?"

 These LUTs are programmed individually by the Caravel Wrapper's RISC V CPU

WHYTHIS DESIGNFORA CELLULAR AUTOMATON?

The Chaos Automaton is an array-based (cellular) design. One separate goal was to see just how large of an array could fit within the user project area.

Custom Settings

• set ::env(ROUTING_CORES) 16

• set ::env(MACRO_PLACEMENT_CFG) \$script_dir/macro_placement.cfg

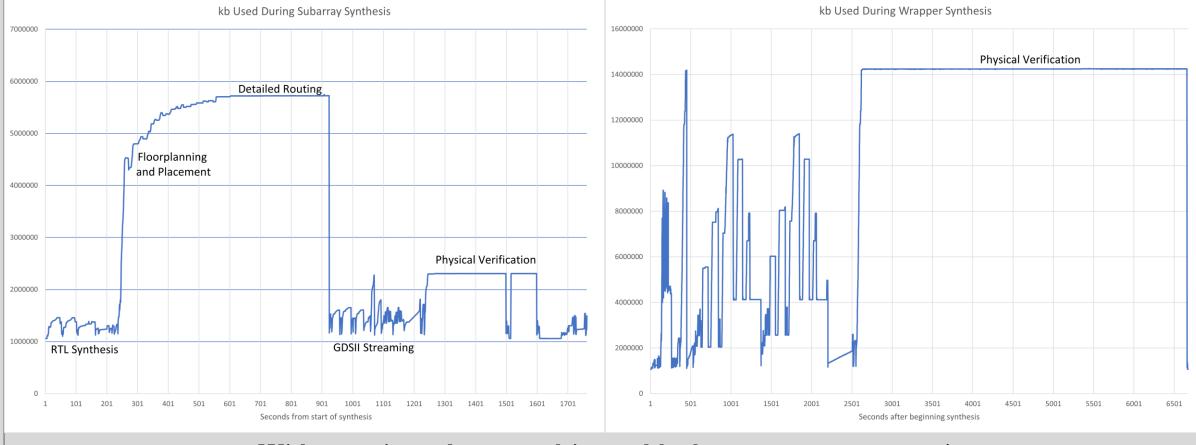
Subarray:

- set ::env(DIE_AREA) "0 0 825 585"
- set ::env(PL_TARGET_DENSITY) 0.45

What Were the Obstacles?

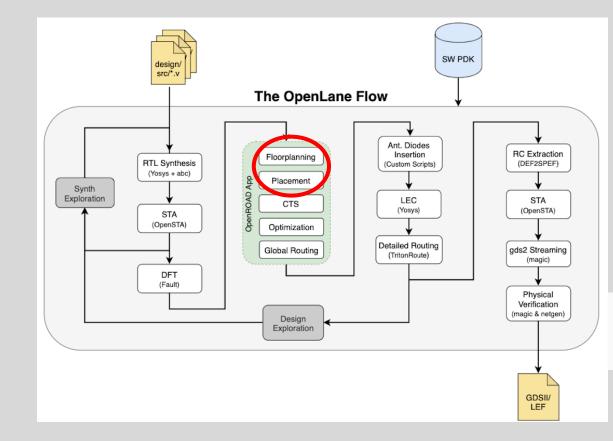
01

Memory Consumption


02

Documentation

03


Execution Time

Obstacle 1: Memory Consumption

Without using subarrays, this would take even more memory!

Obstacle 2: Documentation

FP_PDN_VOFFSET	The offset of the vertical power stripes on the metal layer 4 in the power distribution network (Default: 16.32)	
FP_PDN_VPITCH	The pitch of the vertical power stripes on the metal layer 4 in the power distribution network (Default: 153.6)	
FP_PDN_HOFFSET	The offset of the horizontal power stripes on the metal layer 5 in the power distribution network (Default: 16.65)	
FP_PDN_HPITCH	The pitch of the horizontal power stripes on the metal layer 5 in the power distribution network (Default: 153.18)	
FP_PDN_AUTO_ADJUST	Decides whether or not the flow should attempt to re- adjust the power grid, in order for it to fit inside the core area of the design, if needed. 1=enabled, 0 =disabled (Default: 1)	
	<pre>list {vccd1} {vccd2} {vdda1} {vc }</pre>	
	list {vssd1} {vssd2} {vssa1} {vs G PINS_DEFINES) "USE_POWER_PINS"	
	RO_HOOKS).* vccd1 vssd1 vccd1 v	

Obstacle 3: Execution Time

gh repo clone	make setup	make chaos_subarray	<pre>make user_project_wrapper</pre>
45 Seconds	1 Minute and 21 Seconds	30 Minutes	1 Hour and 45 Minutes

2 Hours and 15 Minutes per Synthesis

Conclusion

Overall, this research has proved that it is possible for a high school student to effectively use current EDA technologies, which acts as proof that more people are able to enter the Electronic Design space.

Key Links:

- Chaos Automaton Repository: <u>https://github.com/AlexanderJGoldstein/chaos_automaton_Summer_2022</u>
- Caravel Harness Repository: <u>https://github.com/efabless/caravel</u>
- Caravel User Project Repository: <u>https://github.com/efabless/caravel_user_project</u>
- OpenLANE Documentation: <u>https://OpenLANE-</u> <u>docs.readthedocs.io/en/rtd-develop/</u>
- WSL Documentation: <u>https://learn.microsoft.com/en-us/windows/wsl/</u>

Acknowledgements

 Poolesville High School Science, Math, and Computer Science Program