ACCESSIBILITY OF
CHIPDESIGN TO THE
NON-PROFESSIONAL

Alex Goldstein (Alex_Goldstein@outlook.com), Tim

Edwards, Ph.D. (tim@opencircuitdesi CcO

mailto:Alex_Goldstein@outlook.com
mailto:tim@opencircuitdesign.com

O1

Design a microchip

that will fulfill a
certain purpose
and detail its
functionality in
Verilog Code

Project Overview

02

Create a potential
chip layout to be
fabricated using the
OpenLANE
software

03

Submitthe chip
layouttothe
Efabless Open
MPW 7 Shuttle to be
fabricated

WSL 2 architecture overview

Lightweight Linux utility VM

Windows
usermode

Windows NT Kernel

Hypervisor

GNU/Linux
usermode

Linux Kernel

Setting Up the
Synthesis
Environment

e OpenLANE onlyrunsin
a Unix-based
environment

e About 80% of home
computers run
Windows

« We can getaround this
by utilizing the
“Windows Subsystem
for Linux (WSL)”

What About
Dependencies?

(e}

Almost all of the
Dependencies can be
installed as normal
through the terminal

The Docker Daemon
cannotberuninthe
terminal on its own

The Docker Desktop
Application allows us
to still use the daemon
through the engine’s
WSL 2 Integration

Settings

&

* O @ r

General

Resources

Advanced

‘roxies
Metwark

* W5L Integration

Docker Engine
Experimental features
Kubernetes

Software updates

Extensions

Resources WwsL Integration

Configure which WSL 2 distros you want to access Docker from.

Enable integration with my default WSL distro

Enable integration with additional distros:

® ubuntu2004

Cancel

RAM 3.17GEB CPU 0.07% W Mot connected to Hub

vd12.0

Q'.

$ gh repo clone
Alexander]Goldstein/chaos_automaton_Summer 2022 -- --

synthesis Process

[N N IO OF T8 T8 ETEE 7 D -

Q
")
©
+
-
I
=

cd chaos_automaton_Summer_ 2022

mkdir dependencies

export OPENLANE_ROOT=$PWD/dependencies/openlane_src
export PDK_ROOT=$PWD/dependencies/pdks

export PDK=skyl1l30B

make setup

make chaos_subarray

make user_project _wrapper

T A A A A A A A B

make ship

=
-
i
i
[
e
-
]
=
=
p
=
=
!g
=
=
=
ra
14
=
=
]
-
g
=
]
"
=
=
]
=

The Final Design

o

3 by 5 array of subarrays (15 total)

o

Each subarray is a 10 x 6 array of chaos cells
(60 per subarray)

o

There are 900 chaos cells in total!

63.68% Utilization

PRI i AR i

A {0 SOTIT AT S LTEUTE S T T AR S 4 e

e T

The final layout for a single completed subarray A close-up of 0.4%9 of the subarray (25,0009 magnification)

q-LN07T
T

A 3x 3 array of chaos cells

1111111111111111

Y

Nout Nin

Sout

A

Y

A

Sin

4-input LUT

A single chaos cell

Whatisthis “Chaos Automaton?”

o Alarge array of

Win -
Wout

interconnected LUT
chips
programming) is

o The array (apart from
completely
asynchronous

Whatisthis “Chaos Automaton?”

o These LUTSs are programmed
individually by the Caravel
Wrapper’s RISCV CPU

] 3 — = <—|
LY M LY :
|
M
I~ € — - e
AA A AA
< < — I~ e
AA Al AL
data staging
64 bits
clock? §read/write
clock 4 A latch To program a LUT:
) Write cell address to controller
Serial load Write LUT data to staging register
controller L wishbone Set controller transfer bit
Y bus (32 bit) Wait for transfer bit to clear
Caravel To _read back LUT data:
RISC-V Write cell address to cqntroller
processor Set controller transfer bit
Wait for transfer bit to clear

Read LUT data from staging reqister

WHY THIS
DESIGN FOR A

CELLULAR
AUTOMATON?

The Chaos
Automaton is an
array-based
(cellular) design.
One separate
goal was to see
just how large of
an array could fit
within the user
project area.

Custom settings

o set::env(ROUTING CORES) 16
o set :env(MACRO PLACEMENT CFG) $script_dir/macro_placement.cfg

Subarray:

o set::env(DIE _AREA) "O O 825 585¢
o set::env(PL TARGET DENSITY) 0.45

What Were the Obstacles?

O1 02 03

Memory Documentation Execution Time

Consumption

7000000

6000000

5000000

4000000

3000000

2000000

1000000

Obstacle 1. Memory Consumption

kb Used During Subarray Synthesis

kb Used During Wrapper Synthesis

16000000

14000000

Detailed Routing

o

12000000

Floorplanning
and Placement

10000000 F

8000000 ’J '

Physical Verification 6000000

s

4000000

M

RTL Synthesis

1 101 201

301 401 501 601

GDSII Streaming 2000000

701 801 901 1001 1101
Seconds from start of synthesis

1201 1301 1401 1501 1601 1701 1 501 1001 1501 2001

Physical Verification

2501 3001 3501 4001
Seconds after beginning synthesis

Without using subarrays, this would take even more memory!

4501

5001

5501

6001

6501

Obstacle 2: Documentation

FP_PDN_VOFFSET

The offset of the vertical power stripes on the metal
layer 4 in the power distribution network
(Default: 16.32)

The pitch of the vertical power stripes on the metal
layer 4 in the power distribution network
(Default: 153.6)

The offset of the horizontal power stripes on the
metal layer 5 in the power distribution network
(Default: 16.65)

The pitch of the horizontal power stripes on the metal
layer 5 in the power distribution network
(Default: 153.18)

Decides whether or not the flow should attempt to re-
adjust the power grid, in order for it to fit inside the
core area of the design, if needed.

1=enabled, 0 =disabled (Default: 1)

set ::env(VDD _NETS) [list {vcecdl} {vccd2} {vddal} {vdda2}]
| set ::env(GND_NETS) [list {wvssdl} {vssd2} {vssal} {vssa2}]
EFINES) "USE_POWER_PINS"
.* weedl wssdl wveedl wssdl™

The OpenLane Flow FP_PDN_VPITCH

/’ ™
/ : r \,
f - ‘I

N Ant. Diodes - FP_PDN_HOFFSET

Floorplanning Insertion RC Extraction - -

RTL Synthesis (Gustom Scripts) (DEF2SPEF)
(Yosys + abc) e
:
Sy'nm. g ~—_
Exploration = cTS LEC FP_PDN_HPITCH
A STA T (Yosys)
Detailed Routing
Global Routing .
¥ (TritonRoute) FP_PDN_AUTO_ADJUST
DFT I
(Fault)
Physical
Verification
Design (magic & netgen)
\ Exploration /
N set lenv T
set ::ev(FP_PDN_MACRO HOOKS)
Y
GDSIIf

LEF

https://openlane-docs.readthedocs.io/en/rtd-develop/

Obstacle 3: Execution Time
45 Seconds 1 Minute and 30 Minutes
21 Seconds

1 Hour and 45 Minutes

2 Hours and 15 Minutes per Synthesis

Conclusion

Overall, thisresearch has proved that it is possible for a high school student to effectively
use current EDA technologies, which acts as proofthat more people are able to enter the
Electronic Design space.

Key Links: Acknowledgements

o

Chaos Automaton Repository: o Poolesville High School Science,
Math, and Computer Science

Program

[e]

Caravel Harness Repository:

[e]

Caravel User Project Repository:

[e]

OpenLANE Documentation:

[e]

WSL Documentation:

https://github.com/AlexanderJGoldstein/chaos_automaton_Summer_2022
https://github.com/efabless/caravel
https://github.com/efabless/caravel_user_project
https://openlane-docs.readthedocs.io/en/rtd-develop/
https://learn.microsoft.com/en-us/windows/wsl/

