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O1

Design a microchip

that will fulfill a
certain purpose
and detail its
functionality in
Verilog Code

Project Overview

02

Create a potential
chip layout to be
fabricated using the
OpenLANE
software

03

Submitthe chip
layouttothe
Efabless Open
MPW 7 Shuttle to be
fabricated




WSL 2 architecture overview

Lightweight Linux utility VM

Windows
usermode

Windows NT Kernel

Hypervisor

GNU/Linux
usermode

Linux Kernel

Setting Up the
Synthesis
Environment

e OpenLANE onlyrunsin
a Unix-based
environment

e About 80% of home
computers run
Windows

« We can getaround this
by utilizing the
“Windows Subsystem
for Linux (WSL)”




What About
Dependencies?

(e}

Almost all of the
Dependencies can be
installed as normal
through the terminal

The Docker Daemon
cannotberuninthe
terminal on its own

The Docker Desktop
Application allows us
to still use the daemon
through the engine’s
WSL 2 Integration

Settings
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Docker Engine
Experimental features
Kubernetes

Software updates

Extensions

Resources WwsL Integration

Configure which WSL 2 distros you want to access Docker from.

Enable integration with my default WSL distro

Enable integration with additional distros:

® ubuntu2004
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$ gh repo clone
Alexander]Goldstein/chaos_automaton_Summer 2022 -- --

synthesis Process

[N N IO OF T8 T8 ETEE 7 D -

Q
")
©
+
-
I
=

cd chaos_automaton_Summer_ 2022

mkdir dependencies

export OPENLANE_ROOT=$PWD/dependencies/openlane_src
export PDK_ROOT=$PWD/dependencies/pdks

export PDK=skyl1l30B

make setup

make chaos_subarray

make user_project _wrapper
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make ship
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The Final Design

o

3 by 5 array of subarrays (15 total)

o

Each subarray is a 10 x 6 array of chaos cells
(60 per subarray)

o

There are 900 chaos cells in total!

63.68% Utilization
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The final layout for a single completed subarray A close-up of 0.4%9 of the subarray (25,0009 magnification)
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A 3x 3 array of chaos cells
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A single chaos cell

Whatisthis “Chaos Automaton?”

o Alarge array of

Win -
Wout

interconnected LUT
chips
programming) is

o The array (apart from
completely
asynchronous




Whatisthis “Chaos Automaton?”

o These LUTSs are programmed
individually by the Caravel
Wrapper’s RISCV CPU
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data staging
64 bits
clock? §read/write
clock 4 A latch To program a LUT:
) Write cell address to controller
Serial load Write LUT data to staging register
controller L wishbone Set controller transfer bit
Y bus (32 bit) Wait for transfer bit to clear
Caravel To _read back LUT data:
RISC-V Write cell address to cqntroller
processor Set controller transfer bit
Wait for transfer bit to clear

Read LUT data from staging reqister




WHY THIS
DESIGN FOR A

CELLULAR
AUTOMATON?

The Chaos
Automaton is an
array-based
(cellular) design.
One separate
goal was to see
just how large of
an array could fit
within the user
project area.




Custom settings

o set::env(ROUTING CORES) 16
o set :env(MACRO PLACEMENT CFG) $script_dir/macro_placement.cfg

Subarray:

o set::env(DIE _AREA) "O O 825 585¢
o set::env(PL TARGET DENSITY) 0.45




What Were the Obstacles?

O1 02 03

Memory Documentation Execution Time

Consumption
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Obstacle 1. Memory Consumption

kb Used During Subarray Synthesis

kb Used During Wrapper Synthesis
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Without using subarrays, this would take even more memory!
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Obstacle 2: Documentation

FP_PDN_VOFFSET

The offset of the vertical power stripes on the metal
layer 4 in the power distribution network
(Default: 16.32 )

The pitch of the vertical power stripes on the metal
layer 4 in the power distribution network
(Default: 153.6 )

The offset of the horizontal power stripes on the
metal layer 5 in the power distribution network
(Default: 16.65 )

The pitch of the horizontal power stripes on the metal
layer 5 in the power distribution network
(Default: 153.18 )

Decides whether or not the flow should attempt to re-
adjust the power grid, in order for it to fit inside the
core area of the design, if needed.

1=enabled, 0 =disabled (Default: 1 )

set ::env(VDD _NETS) [list {vcecdl} {vccd2} {vddal} {vdda2}]
| set ::env(GND_NETS) [list {wvssdl} {vssd2} {vssal} {vssa2}]
EFINES) "USE_POWER_PINS"
.* weedl wssdl wveedl wssdl™
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https://openlane-docs.readthedocs.io/en/rtd-develop/

Obstacle 3: Execution Time
45 Seconds 1 Minute and 30 Minutes
21 Seconds

1 Hour and 45 Minutes

2 Hours and 15 Minutes per Synthesis




Conclusion

Overall, thisresearch has proved that it is possible for a high school student to effectively
use current EDA technologies, which acts as proofthat more people are able to enter the
Electronic Design space.

Key Links: Acknowledgements
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