
xcell: a cell library characterizer for combinational
and state-holding gates

Rajit Manohar
Computer Systems Lab

Yale University
New Haven, CT, USA
rajit.manohar@yale.edu

Abstract—We present an open-source cell library characterizer
suitable for characterizing combinational logic as well as general
state-holding gates that are used in asynchronous logic as well
as clocked circuit families like pre-charged logic. The output of
the characterizer uses the Synopsys .lib format, and has been
used as the input to an existing asynchronous static timing and
power analysis tool for multiple technologies and multiple cell
libraries.

Index Terms—cell characterization, timing estimation, power
estimation.

I. INTRODUCTION

Static timing analysis and power analysis are an integral
part of any electronic design automation (EDA) flow. The two
key inputs to analysis tools are the user design specified as a
collection of components (standard cells and macros) and their
interconnections, and a timing/power library that is typically
provided by the standard cell library vendor in Synopsys’
open-source Liberty (.lib) file format [1].

We have implemented an open-source tool called xcell1,
designed to automate the generation of Synopsys .lib files
from a gate-level cell library. xcell is designed for the
requirements of asynchronous logic, and can also be used
to characterize combinational logic for synchronous logic.
xcell summarizes delay and power information using “non-
linear delay model” (NLDM) tables.

For synchronous logic, a Liberty file uses different syntax
when specifying timing and power information for combina-
tional logic gates as compared to the syntax used for differ-
ent categories of state-holding gates (e.g. flip-flops, latches,
and tri-state drivers). Since asynchronous logic uses a much
broader class of state-holding gates, xcell treats all state-
holding gates in a uniform fashion.

In order to construct the .lib file, xcell runs a large
number of SPICE simulations to compute the different values
needed to construct the .lib file: leakage power, input
capacitance, delay values and transition time for timing arcs,
and internal power tables for power estimation. Two external
SPICE simulators are currently supported: Xyce, the open-
source simulator from Sandia National Labs [2], and hspice,
a proprietary simulator from Synopsys. (We support both
because open-source simulators do not always support the

This work was supported by DARPA IDEA grant FA8650-18-2-7850.
1Available at https://github.com/asyncvlsi/xcell

process design kits in advanced technology nodes.) The oper-
ation of the characterizer is controlled by a configuration file
that specifies a number of parameters used to characterize the
cell library, such as operating voltage, temperature, the path
containing the SPICE models for the technology being used,
as well as the input transition time and output load capacitance
values to be used to characterize the delay and power for each
cell.

The characterizer is designed to operate with the open-
source ACT toolkit for asynchronous logic2, and leverages
several utility functions provided by the ACT infrastructure
including: (i) the ability to represent a cell library in the ACT
syntax; (ii) automated generation of a SPICE netlist from the
ACT definition of a cell; and (iii) the ability to read both raw
SPICE trace file formats, as well as an older hspice trace
file format.

II. SPECIFYING THE CELL LIBRARY

The following is an example of a buffer cell specified in the
ACT syntax.

defcell BUFX2 (bool? A; bool! Y)
{
bool _Y;
prs {
A => _Y-
_Y => Y-

}
sizing { _Y{-1}; Y{-2} }

}

The name of the cell is BUFX2, with an input signal A and
an output signal Y. Internally, the cell also has signal _Y but
this is not exposed via its port list. The circuit is specified
using the production rule syntax. Production rules can specify
arbitrary pull-up and pull-down networks via the Boolean logic
expression corresponding to the pull-up/pull-down switching
network. The rule A => _Y- is an inverter; when A is true,
_Y is set low. Similarly, _Y => Y- is another inverter, and
so the circuit corresponds to two inverters in series. Finally,
the sizing specification says that _Y should have unit drive
strength, and Y should have twice the unit drive strength [3].
Values for width/length of transistors, the definition of what a

2Available at https://github.com/asyncvlsi/act



unit drive strength is in terms of transistor sizing, the transistor
model names, etc. are all contained in technology-dependent
ACT configuration files. xcell leverages this existing infras-
tructure for specifying and generating circuits.

An example of a state-holding gate used in asynchronous
logic, an inverting C-element, is shown below:

export
defcell gcelem2x0 (bool? in[2]; bool! out)
{

prs {
in[0]<10> & in[1] -> out-
˜in[0]<12> & ˜in[1] -> out+

}
}

Here, the pull-down network for output signal out is given
by the condition in[0] & in[1]. In addition, the width
of the transistors used to implement the pull-down network
is specified as 10λ units, where λ is half the feature size.
The pull-up network is the conjunction of the negation of
in[0] and the negation of in[1]. Hence, when in[0]
and in[1] disagree, the gate is state-holding. The core ACT
library detects that the production rules correspond to a state-
holding gate, and auto-generates a keeper for this cell to
ensure that the output is never floating. (This behavior can
be disabled, if necessary.)

A complete combinational logic cell library based on the
OSU 180nm library for combinational logic [4] but re-written
in a technology-independent format is available as part of the
ACT standard library3. ACT configuration files that provide an
example of how technology-specific parameters are specified
for the open-source Skywater 130nm process are available as
well.4

A. Generating SPICE for a cell

ACT has a number of default rules to translate a cell defini-
tion into a transistor-level implementation, and there is a well-
defined mapping from the circuit description and the transistor-
level implementation that is inferred from the description.5

ACT also permits a user to change transistor sizing specifiers,
specify non-standard keepers, as well as individual transistors
that may be needed to provide an accurate representation of a
particular cell in the cell library.

Given a cell, ACT already includes methods to generate
a SPICE netlist by combining the technology-specific infor-
mation in ACT configuration files along with the directives
specified by the user in the ACT cell description. The ACT
library can also be used to determine the input and output
ports for each cell. We leverage this existing infrastructure to
generate the SPICE netlist for an individual cell during the
characterization process.

In addition to using the core ACT SPICE generation sup-
port, xcell allows user-specified SPICE netlists that include

3https://github.com/asyncvlsi/stdlib/blob/main/std/cells.act
4https://github.com/asyncvlsi/sky130l
5https://avlsi.csl.yale.edu/act/doku.php?id=language:langs:prs

additional extracted parasitics beyond the pure transistor-level
netlist that is auto-generated by ACT.

III. CHARACTERIZATION METHOD

Given a cell described in the ACT syntax, we examine the
logical definition of the cell in terms of the set of pull-up
and pull-down networks within it. A cell is labeled as state-
holding if any gate in the cell is state-holding; otherwise, it is a
combinational cell. For state-holding cells, we identify every
state-holding node within the cell, and identify all variables
that are inputs to each state-holding gate. Finally, we construct
the truth table for the pull-up and pull-down networks for each
state-holding gate in the cell.

Cell characterization proceeds in four phases: (i) leak-
age power calculation; (ii) input capacitance calculation;
(iii) switching scenario computation; and (iv) switching delay
and internal power calculation.

A. Leakage power

For leakage power, we create a SPICE file that applies all
possible input combinations to a cell. To reduce the characteri-
zation time, we do this in a single SPICE run, thereby reducing
the number of times we have to launch the SPICE simulator.
SPICE .measure directives are used to compute the average
leakage current over a window of time, and this is used to
estimate the leakage power for each input scenario. Note that
hspice and Xyce use slightly different syntax and output
formats for their .measure directives, and xcell generates
the appropriate syntax based on the selected simulator.

The ACT core library also has the capability to read certain
SPICE simulation traces. We use this capability to determine
the value of each output signal for the cell from the result
of SPICE simulations. Recall that we previously recorded all
input signal names for every state-holding gate in a cell; we
also read the value of these input signals from the SPICE
simulation trace. Using this information, we can ensure that
we only record leakage information in legal scenarios for the
state-holding gate (i.e. one where the circuit does not have a
stable power/ground short).

B. Input capacitance

The effective input capacitance is computed by using an RC
estimate. A resistor is attached to the input port of interest, the
input is changed from zero to one and one to zero, and the
effective RC time constant is computed for both transitions.
From this calculation and given that the external resistance
is known, the average effective capacitance is computed and
used as an estimate for the input rise and fall capacitance. This
procedure is repeated for each input. All these scenarios are
combined in a single SPICE simulation to reduce runtime.

C. Switching scenarios

xcell must compute all the timing arcs for a cell. Since
we have an ACT description of the cell, we analyze the circuit
for the cell to classify it into one of the three different cases
described below. Note that cells can have multiple outputs,



and for a cell to be in one of the categories described below
it means that every output satisfies the constraints for the
category.

A switching scenario is a sequence of assignments to the
primary inputs of a cell that result in the output changing. For
example, a switching scenario for the buffer example earlier
would be the following: (a) Step 1: set the input A to zero,
which results in the output being zero; (b) Step 2: set the
input A to one, which causes the output to have a zero to one
transition. This is a two-step scenario. The buffer also has a
second (symmetric) switching scenario that causes the output
to have a one to zero transition. To characterize a cell, we
must determine all possible scenarios that cause the output to
change.

a) Cells with only combinational gates: For combina-
tional gates, we have already computed the truth-table infor-
mation for the cell output from our analysis of the SPICE
simulation trace file during leakage estimation. Hence, we
can compute every possible switching scenario, and construct
input scenarios that bring the output of the cell into a known
state (step 1), and then switch an input signal to cause the
output to change state while holding the other inputs fixed
(step 2). We construct all possible “two-step” scenarios for
the combinational cell being characterized, and record this in
a “dynamic scenario” table for the cell.

b) Cells with combinational or simple state-holding
gates: Computing switching scenarios for state-holding gates
is more complex. A simple state-holding gate is one where all
inputs to the state-holding gate are combinationally determined
from the primary inputs of a cell, and the output of the state-
holding gate and/or its inverted version is directly available as
a primary output of the cell. We view these as simple because
both the pull-up and pull-down network for any internal state-
holding gate can be directly controlled by setting the primary
inputs to the cell.

For simple state-holding gates, xcell can automatically
compute all the switching scenarios for the gate. Switching
scenarios for such gates consist of two, three, or four steps.
In a two-step scenario, the inputs to the cell are set causing
the output of the cell to be set to a fixed value (step 1).
Followed by this, a particular input is switched, causing the
output to also switch (step 2). This is similar to combinational
cell characterization. However, this by itself may not capture
all possible timing arcs for a simple state-holding gate.

A three-step scenario corresponds to the next level of
complexity of identifying a switching scenario. It takes the
following form:

• the inputs are set to a value that sets the output to a
known value (step 1);

• an input is changed to bring the gate into a state-holding
gate without any glitches on the output (step 2);

• finally, another input is changed to cause the output to
switch (step 3).

An example of this is the inverting C-element: to characterize
a zero to one transition on the output, we first set both inputs
high (step 1); then, one of the inputs is set to low (step 2);

finally, the second input is set to low that causes the output to
make a zero to one transition (step 3).

In certain cases, it is possible that bringing the gate into
a state-holding state (step 2) does not lead to a state where
a single input change causes the output to switch (step 3).
For such cases, we compute a four-step scenario: the first two
steps are the same as the three-step scenario, but in step 3 we
switch to a second state-holding state that preserves the output
value. Finally, we change the input of interest that causes the
output to change in step 4.

To summarize, for state-holding gates, we automatically
compute trajectories through the state-space to identify all
possible timing arcs. A trajectory may require two, three, or
four steps for simple state-holding gates. These trajectories are
recorded in a “dynamic scenario” table for the state-holding
cell.

c) Cells with complex state-holding cells: For cells that
correspond to circuits that are more complex than simple
state-holding gates, we provide support for the user to spec-
ify the state-space trajectories to be used for the switching
scenarios. This is done via the xcell configuration file.
In our experience in designing asynchronous circuits and
characterizing over a hundred different cell types (in terms of
logical functionality—i.e. ignoring drive strength, gate sizing,
transistor threshold voltage, etc. which would vastly increase
the cell count), we have had to use the user-specified state-
space trajectory feature for two cells.

D. Timing and power information

The dynamic scenario table for a cell is used to create a
SPICE scenario for timing and power characterization. The
xcell configuration file specifies the set of input transition
times and output load capacitance values to be used for the
NLDM tables for timing and power. We construct a SPICE run
consisting of all possible switching scenarios with all possible
input transition times. We put a fixed load capacitance on the
output of the cell, and then use the parameter sweep feature
supported by both hspice and Xyce (albeit with different
syntax) to sweep the output load capacitance. We measure the
internal power and delay using .measure statements, and
use this to populate the delay and power tables for the cell.

E. Final output

xcell produces an output in the standard Synopsys Liberty
file format. We have verified that the output generated by
xcell can be read by both the Cyclone timing and power
analysis engine for asynchronous logic [5], as well as a few
commercial tools.

As should be clear from the previous description, we charac-
terize state-holding gates in a manner similar to combinational
logic gates. Hence, we report timing and power information
using the same syntax as standard combinational logic. This
is a departure from the standard way that .lib files are
used, and hence our tool is suitable for synchronous library
characterization only for combinational gates.



For combinational gates, the Synopsys Liberty file includes
a “function” field that specifies the Boolean logic function
corresponding to the output. We emit this field when generat-
ing the .lib file using the truth table information that was
computed as part of the characterization process.

For state-holding gates, the output cannot be described as
a simple function of the input. Using the inverting C-element
example, the output out would be one if in[0] and in[1]
are zero, zero if in[0] and in[1] are one, and state-holding
otherwise. To capture this in the function field of the
.lib file, we include the output pin as part of the Boolean
expression in the function field. If the output pin is named
out, the Boolean expression for the pull-up network is U,
and the Boolean expression for the pull-down network is D,
then the output function is reported as (U) + out*!(D).
The presence of the output pin name in the expression for the
function can be used as a test for a state-holding gate.

F. Runtime

We ran xcell using Xyce as the underlying circuit
simulator on a 2020 Apple Macbook Air (M1 processor) with
8GB of memory. xcell generated a 1.01MB .lib file for
a library with 49 cells under three minutes, where we used
NLDM tables with 70 points per table for each delay and
power table.

IV. RELATED WORK AND SUMMARY

We presented the implementation of xcell, a cell li-
brary characterizer suitable for generating Liberty files for
combinational logic gates as well as state-holding gates for
asynchronous logic. The .lib files generated by xcell have
been as the input to the Cyclone static timing and power anal-
ysis engine for asynchronous logic [5]. We have used xcell
to characterize cells by using Xyce in Skywater 130nm and
TSMC 65nm, and by using hspice in ST Micro’s 28nm
FDSOI process. The .lib files generated for combinational
logic have also been used as the input to the technology-
mapper in abc6, an open-source logic optimization engine.

The closest related work is the cell characterizer LiChEn [6],
which can be used to automate the characterization of cell
libraries including state-holding gates used for asynchronous
logic. LiChEn is limited to cells that have a single output, and
uses Cadence spectre as its SPICE simulator. ACT inte-
gration simplifies the user interface for xcell. For example,
xcell can auto-generate SPICE netlists, determine I/O signal
names, and automatically determine the logic function for each
cell output; in LiChEn, all of these must be explicitly specified
through a scripting interface.

There are a number of future extensions that would increase
the utility of xcell: (i) support for flip-flop, latch, and tri-
state-specific Liberty output formats could be added while re-
using most of the code base for generating SPICE scenarios
and collecting measurement results; (ii) additional charac-
terization for on-chip variations could be incorporated; and

6https://github.com/berkeley-abc/abc

(iii) better delay models beyond NLDM could be incorporated
to improve accuracy.

REFERENCES

[1] Synopsys, “Liberty user guides and reference manual suite,” http://www.
opensourceliberty.org, 2017.

[2] E. R. Keiter, H. K. Thornquist, R. J. Hoekstra, T. V. Russo, R. L.
Schiek, and E. L. Rankin, “Parallel transistor-level circuit simulation,”
in Simulation and Verification of Electronic and Biological Systems.
Springer, 2011, pp. 1–21.

[3] R. F. Sproull and I. E. Sutherland, “Logical effort: Designing for speed
on the back of an envelope,” in Conference on Advanced Research in
VLSI (ARVLSI). MIT Press, 1991, pp. 1–16.

[4] J. E. Stine, “System-on-chip designs for SCMOS MOSIS AMI 0.6um,
AMI 0.35um, TSMC 0.25um, and TSMC 0.18um,” https://vlsiarch.ecen.
okstate.edu/flows/MOSIS SCMOS/osu soc v2.7/, 2017.

[5] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, “Cyclone: a static timing
and power engine for asynchronous circuits,” in IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC). IEEE,
2020, pp. 11–19.

[6] M. T. Moreira, C. H. M. Oliveira, N. L. V. Calazans, and L. C. Ost,
“Lichen: Automated electrical characterization of asynchronous standard
cell libraries,” in 2013 Euromicro Conference on Digital System Design.
IEEE, 2013, pp. 933–940.


