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Abstract—Open-source Electronic Design Automation (EDA)
tools are rapidly transforming chip design by addressing key
barriers of commercial EDA tools such as complexity, costs, and
access. Recent advancements in Large Language Models (LLMs)
have further enhanced efficiency in chip design by providing
user assistance across a range of tasks like setup, decision-
making, and flow automation. This paper introduces ORAssistant,
a conversational assistant for OpenROAD, based on Retrieval-
Augmented Generation (RAG). ORAssistant aims to improve
the user experience for the OpenROAD flow, from RTL-GDSII
by providing context-specific responses to common user queries,
including installation, command usage, flow setup, and execution,
in prose format. Currently, ORAssistant integrates OpenROAD,
OpenROAD-flow-scripts, Yosys, OpenSTA, and KLayout. The data
model is built from publicly available documentation and GitHub
resources. The proposed architecture is scalable, supporting
extensions to other open-source tools, operating modes, and LLM
models. We use Google Gemini as the base LLM model to build
and test ORAssistant. Early evaluation results of the RAG-based
model show notable improvements in performance and accuracy
compared to non-fine-tuned LLMs.

Index Terms—OpenROAD, conversational AI, chatbot,
retrieval-augmented generation, electronic design automation,
EDA, LLM, RAG, ASIC design, chip design

I. INTRODUCTION

Since 2018, open-source EDA tools have rapidly democra-
tized hardware design and driven innovation through research
and collaboration. Free from licensing constraints, they foster
a thriving ecosystem of chip design and education [1]–[3].
Recently, ML and GenAI-based chip design methodologies
have been applied to open-source tools, yielding significant
benefits in productivity [4]. The open infrastructure of these
tools simplifies model training, integration and enable the use of
shared resources, such as documentation, scripts, and datasets
for a host of deployment options [5].

ORAssistant began as a Google Summer of Code (GSoC)
2024 [6] project§ with an objective of assisting OpenROAD
users in completing basic tasks successfully — from setup to
flow execution. We focused on addressing frequently occurring
problems in areas such as installation, design setup and flow,
command usage, and debugging. Traditional user resources,
such as documentation and tutorials, tend to become outdated
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quickly and fail to incorporate practical knowledge gained
from collaborative user experiences. Our goal was to build a
chatbot that harnesses the dynamic nature of open-source tools
and resources to address basic OpenROAD tasks efficiently.
We developed a publicly available chatbot [7] that supports
continuous improvement and scalability across the tool chain.
The complete source code for ORAssistant is available on
GitHub [8].

ORAssistant’s RAG architecture can be used atop any
publicly available LLM. The RAG system enhances the base
LLM’s output by ensuring that knowledge is retrieved from
trusted data sources, generating reliable responses [9]. Our key
contributions are:

• Development of ORAssistant: A conversational AI agent
that assists users in a simple question and answer format
with basic conversational abilities.

• ORAssistant RAG Dataset: A curated dataset derived
from open-source tool documentation and GITHUB data
from the OpenROAD and OpenROAD-flow-scripts repos-
itories.

• ORAssistant Evaluation Framework: Development of a
comprehensive evaluation methodology that utilizes both
the publicly available EDA Corpus dataset [10] and a self-
curated question-answer (QA) dataset. This framework
enables robust assessment of LLM performance in the
OpenROAD domain, facilitating comparisons between
ORAssistant and non-fine-tuned LLMs.

II. DATASET GENERATION

The effectiveness of any RAG-based system depends on the
quality of the underlying data sources, as they form the basis for
model accuracy, information retrieval, and response generation.
Thus, curating a properly annotated dataset is crucial.

A. Data Sources
ORAssistant primarily assists users of OpenROAD and

OpenROAD-flow-scripts while also offering basic support
across the RTL-to-GDSII tool chain, from synthesis to layout
verification. Its knowledge base includes public documentation,
tool manuals, and custom-annotated GITHUB discussions, as
shown below:



• OpenROAD Documentation [11]
• OpenROAD-flow-scripts Documentation [12]
• OpenROAD Man pages [11]
• OpenSTA Documentation [13]
• Yosys Documentation [14]
• KLayout Documentation [15]
• Research Papers, Tutorials on OpenROAD [16]
• Reformatted and labeled GITHUB discussions [17]

These diverse sources capture detailed information about
the tools and their usage. To keep the dataset updated, an
automated build script is used to extract and version data from
the OpenROAD repository and external sources, ensuring that
ORAssistant is equipped with the most relevant and up-to-date
information. Additionally, live hyperlinks for each data source
are stored, enabling citations during response generation.

B. Issues and Discussion Analysis
Along with public documentation sources, selectively

curated conversations from support forums such as GITHUB
issues and discussions have been incorporated to identify
key problem areas. Using the GITHUB GRAPHQL API,
conversations from the issues and discussions pages of the
OpenROAD and OpenROAD-flow-scripts repositories, are
extracted and stored in JSONL datasets. Since these scraped
conversations lack proper annotation, an LLM-based catego-
rization approach has been used to generate three tags for
each conversation: category, subcategory, and referenced tools.
This characterization enables the correct routing of the tool-
based RAG system to domain-specific retriever tools. Detailed
analysis indicated that GitHub Issues were predominantly bug
reports with limited relevance. GitHub Discussions provided a
wider variety of user queries and their corresponding solutions,
making it a more valuable data source for ORAssistant.

The current JSONL dataset [18] consists of a total of 736
issues and 344 discussions. Table I summarizes the distribution
of issues and discussions by category.

TABLE I
DISTRIBUTION OF GITHUB ISSUES AND DISCUSSIONS BY CATEGORY

Category Issues (%) Discussions (%)
Bug 45.90 4.65
Feature request 18.60 8.72
Runtime 13.60 28.50
Build 9.92 8.14
Query 7.34 40.70
Installation 2.85 3.49
Documentation 0.95 1.16
Configuration 0.82 4.65

III. RAG ARCHITECTURE

ORAssistant’s tool-based RAG architecture and data inges-
tion pipeline can be integrated with any LLM, supporting both
local and cloud-based deployments. This allows organizations
to balance performance requirements, computational resources,
and data privacy concerns.

A. Dataset Ingestion
The pipeline processes documents in multiple formats

(Markdown, PDF, HTML), and divides them into smaller, man-
ageable document chunks based on format-specific delimiters.
These chunks are then fed to a SBERT-based [19] embedding
model, which encodes the textual information into dense vector
representations. The resulting vectors are then stored in a
Facebook AI Similarity Search (FAISS) [20] vector database
for downstream use. While this approach efficiently captures the
semantic meaning in each chunk, it is unsuitable for retrieving
documents based on exact keywords. To perform exact term
matching, we use the classical Best Match 25 (BM25) [21]
indexing technique, which allows for keyword-based retrieval.
The knowledge base is thus represented as a weighted sum of
vectors and keyword indices, allowing for both semantic and
exact-term matching.

Fig. 1. Hybrid Retriever Function

B. Hybrid Retriever Function
As illustrated in Figure 1, the retriever function searches

its input knowledge base to identify document chunks most
relevant to a given query. It employs multiple vector search
techniques, including similarity search and maximal marginal
relevance (MMR) search. In similarity search, chunks with
the highest cosine similarity to the input are selected, while
MMR search introduces diversity by minimizing redundancy
in the retrieved chunks. Additionally, a classical text-based
search is performed on the BM25 index to retrieve documents
containing the exact keywords specified in the query. A re-
ranking model then processes these search results, adjusting
the document ranking to provide a top-k selection of the most
relevant documents, ensuring both precision and diversity in
the final output.

C. Domain Specific Retriever Tools
ORAssistant’s knowledge base encompasses a wide range

of information from various applications in the OpenROAD
flow. Subsets of this knowledge base relevant to specific
applications are provided to the hybrid retriever function
to form domain specific retriever tools, as listed in Figure
2. A custom prompt guides the base LLM in selecting the



Fig. 2. ORAssistant’s tool-based RAG Architecture

appropriate retriever tools for each query. For instance, the
OR Commands tool retrieves information specific to the
OpenROAD framework’s commands, while the Installation tool
focuses on documentation related to installation procedures.
In contrast to using a single retriever function on a pooled
knowledge base, the modular approach significantly reduces
the chances of incorrect document retrieval. Additionally, the
architecture allows for future integration with other open-source
tools and flow runners within the OpenROAD ecosystem.

D. Context-Aware Response Generation
As the conversation progresses, ORAssistant stores

question-answer pairs locally to maintain context. When the
user submits a new query, the system first processes the
stored conversation history to ensure context continuity. The
incoming query is then rephrased, incorporating information
from previous exchanges. This gives ORAssistant the capability
to answer follow up queries, and thereby maintain long, context-
aware conversations.

The tool-based RAG architecture ensures that responses
are context-correct by leveraging both the conversation history
and domain-specific knowledge sources. These sources enable
the system to provide responses with precise citations and
hyperlinks for each query. Figure 2 depicts the tool-based
RAG system operating in two distinct stages:

• Initial LLM Call: ORAssistant processes the conversation
history to contextualize and rephrase the user’s current
query. Based on the refined query, the most appropri-
ate tools are selected and documents are subsequently
retrieved.

• Secondary LLM Call: ORAssistant generates a response
for the rephrased query using the documents retrieved by
the selected tools.

IV. HOSTED APPLICATION

ORAssistant can be accessed on a NEXT.JS [22] based
web front-end [7]. The hosted version uses Gemini 1.5 Flash
[23] as its base LLM alongside the text-embedding-004 [24]
model for generating vector embeddings. The web application
supports the creation of multiple conversation threads, each
retaining its own history. This allows users to switch between

threads while keeping each discussion focused and relevant
to specific topics. Figure 3 shows an ORAssistant-generated,
composite response for a user query about floorplan creation
options in OpenROAD-flow-scripts.

Fig. 3. Example of ORAssistant generated response.

V. EVALUATION AND RESULTS

The evaluation of ORAssistant is crucial to understanding
its performance and limitations. The process aims to quantify
the system’s ability to successfully retrieve information from
correct sources and provide precise responses. The evaluation
process identifies areas where the model struggles, allowing for
continuous improvement. Additionally, it helps identify gaps
in the original documentation and knowledge sources. These
insights can guide future improvements through a bidirectional
feedback loop.

To assess the effectiveness of our approach, we compared
ORAssistant’s performance against base pre-trained LLMs like
Gemini 1.5 Flash [23] and GPT-4o [25]. We utilize an approach
based on GPTScore [26], where a separate LLM is used as an
automated evaluator. This LLM Judge is given the original
question, a ground truth answer, and the model-generated
response. Using a carefully designed system prompt, the LLM
Judge then assesses the quality, coherence, and accuracy of the
generated response by comparing it to the ground truth. The
evaluation generates the following metrics:

• Classification metrics: As shown in Table II, the judge
compares the ground truth and LLM’s response, classify-
ing them into one of four predefined categories (TP, TN,
FP, FN). Metrics such as Accuracy, Precision, Recall, and
F1 score are then computed using these classifications.



• LLMScore: The judge assigns a score in the range of
[0, 1], based on the quality and accuracy of the LLM’s
response in relation to the ground truth.

TABLE II
EVALUATION METRICS FOR MODEL ANSWERS

Q: What does CTS stand for?
A: CTS stands for Clock Tree Synthesis. It is a stage...
Eval: True Positive (TP) (Detailed, accurate, and relevant.)
Q: What is the latest movie released?
A: I can’t provide information on movies...
Eval: True Negative (TN) (Correctly identified out of scope.)
Q: What does CTS stand for?
A: CTS stands for Central Time Scheduling...
Eval: False Positive (FP) (Incorrect and irrelevant.)
Q: What does CTS stand for?
A: I cannot provide an answer...
Eval: False Negative (FN) (Failed to answer when expected.)

For our evaluation, we used two QA datasets for evaluation:
a custom curated HumanEval dataset with 50 OpenROAD-
related QA pairs [27], and 100 QA pairs from the publicly
available EDA Corpus dataset [10].

To ensure a fair comparison, we conducted five indepen-
dent runs for each question across these models: ORAssistant
(with Gemini 1.5 Flash), base GPT-4o, and base Gemini 1.5
Flash. Multiple runs help account for the variability in LLM
outputs, reducing outliers and improving statistical reliability.
Evaluation metrics computed using Gemini 1.5 Pro [28] as the
judge LLM have been averaged for each dataset and presented
in Table III. As depicted in Table III, ORAssistant significantly
outperforms the base pre-trained LLMs across both the EDA
Corpus and HumanEval datasets. ORAssistant achieves notably
high precision and recall scores, indicating very few false
positives and false negatives in its responses. In contrast, both
GPT-4o and Gemini 1.5 Flash exhibit subpar performance.
Although GPT-4o achieves high recall scores on both datasets,
it is offset by a very low precision score. This suggests that the
model often hallucinates and generates false positive responses,
without acknowledging its lack of knowledge. Across both
datasets, ORAssistant attains a considerably high LLMScore,
when compared to the base pre-trained LLMs. In terms of
response times, ORAssistant averages 2.6 seconds across the
testing datasets, while base GPT-4o records 4.7 seconds and
base Gemini 1.5 Flash averages 2.3 seconds.

TABLE III
EVALUATION RESULTS ON EDA CORPUS (100 QUESTIONS) AND HUMAN

EVAL (50 QUESTIONS) DATASETS.

EDA Corpus Dataset
Architecture Acc. (%) Prec. (%) Rec. (%) F1 (%) LLMScore (%)
ORAssistant 90.4 94.8 95.2 95.0 77.7
GPT-4o 48.4 48.4 100.0 65.2 52.6
Gemini 1.5 Flash 38.0 43.3 75.7 55.1 35.7

Human Eval Dataset
Architecture Acc. (%) Prec. (%) Rec. (%) F1 (%) LLMScore (%)
ORAssistant 87.2 92.4 94.0 93.2 79.7
GPT-4o 46.8 46.8 100.0 63.8 48.7
Gemini 1.5 Flash 32.8 35.4 80.2 49.1 28.1

Since ORAssistant uses Gemini 1.5 Flash, the contrast
between its scores and the base Gemini 1.5 Flash scores
highlights how the tool-based RAG architecture guides the
LLM towards better performance. While base pre-trained
models struggle with relevance due to general training data
and outdated knowledge, ORAssistant enhances accuracy by
leveraging up-to-date data sources. Moreover, ORAssistant
avoids hallucinations by grounding its responses in reliable,
deterministic, and contextually relevant data sources.

VI. RELATED WORK

An alternate approach for an OpenROAD Assistant [29]
as a chatbot and script generator, uses a fine-tuned LLM. Other
tools like the Hybrid RAG based Ask-EDA [30] and the domain-
adaptive ChatNeMo [31] use proprietary data. ChatEDA [32]
employs fine-tuning for basic task planning in physical design
using OpenROAD and other EDA tools. In [33], the authors
utilize a RAG based system tailored for OpenROAD and EDA
tools, with custom fine-tuned embeddings and reranker models.

RAG offers greater flexibility through real-time adaptation
to tool and data source changes. Our tool-based architecture is
scalable and aligns well with OpenROAD’s modular flow.

VII. FUTURE WORK

Our tool-based architecture enables support for interfacing
with OpenROAD’s Python-based APIs for custom applications.
Combining a fine-tuned model with our RAG architecture will
provide dual advantages of real-time adaptability for documen-
tation and enhanced accuracy for tasks like design exploration
and script generation. To further enhance the performance of
the retriever functions, embeddings and reranker models can be
fine-tuned on ORAssistant’s knowledge base. Adding human-
in-the-loop feedback is another way to continuously improve
both the knowledge base and generated responses. We also
plan to interface ORAssistant with OpenROAD command-line
interface (CLI) and graphical-user-interface (GUI).

VIII. CONCLUSION

In this paper, we present ORAssistant, a RAG-based
assistant built using a scalable, tool-based architecture for
the OpenROAD flow. This chatbot assists users by providing
contextual and reliable answers for common user queries using
native and publicly available data sources. Initial results show
that the RAG model outperforms base pre-trained LLMs from
metrics derived from human evaluations and automated LLM-
based methods. ORAssistant showcases the potential of GenAI-
based tools in chip design to enhance user experience, enabling
users to learn faster and gain deeper insights across all levels
of expertise. This work, supported by the OpenROAD project
team, GSoC, and OSRE, is the result of collaborative and open-
source community-driven EDA advocacy, and contribution.
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