
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

YoYoLint – a custom SystemVerilog RTL linter for

Yosys

Ajeetha Kumari Venkatesan

Director of Verification

AsFigo Technologies

London, UK

ajeethak@asfigo.com

Deepa Palaniappan

ASIC DAV Engineer

AsFigo Technologies

 Rapperswil, Switzerland

deepa@asfigo.com

Saanvi Pradhan

AsFigo Technologies

High School Senior, LTHS

Bee Cave, Texas USA

saanvi.pradhan@gmail.com

Abstract— YoYoLint is an open-source static analysis tool

designed for SystemVerilog RTL code. Written in Python and

built around Slang/PySlang YoYoLint derives learnings from

PySlint, a popular SystemVerilog testbench linter. YoYoLint

aims to assist users in ensuring their SystemVerilog code is well-

prepared for synthesis with Yosys, a popular, opensource RTL

synthesis tool. YoYoLint helps users prepare SystemVerilog

code for synthesis with Yosys, an open-source RTL synthesis

tool. It provides a set of configurable linting rules that focus on

detecting code patterns and issues that might cause problems

during synthesis with Yosys.

The tool runs efficiently and delivers clear feedback on code

violations. Users can run YoYoLint before synthesis with Yosys

to find and fix issues, improving code quality and compatibility.

YoYoLint is extendable, allowing users to add custom linting

rules. It is regularly updated by analyzing SystemVerilog

designs with Yosys, incorporating new unsupported features

into its rule set. This ensures YoYoLint remains useful for

current coding practices.

The paper also addresses the role of linters in managing

coding styles and avoiding common pitfalls in SystemVerilog. It

provides an overview of YoYoLint’s development, potential

extensions, and initial results.

We share our experience in building YoYoLint and potential

extensions. We conclude with the results on a few early use cases.

Keywords—SystemVerilog, PySlint, YoYoLint, Yosys, RTL,

Synthesis, Linting

I. INTRODUCTION

RTL linting is a static analysis technique used to identify
potential issues in Register Transfer Level (RTL) code before
synthesis. By examining the code without executing it, linting
tools can detect errors, inconsistencies, and problems that
could lead to unexpected behavior or synthesis failures.

Yosys is a widely-used open-source RTL synthesis tool
that converts Verilog, SystemVerilog, or VHDL code into a
gate-level netlist. It offers a flexible TCL (Tool Command
Language) interface, allowing users to control the tool’s
behavior through scripting. This makes Yosys suitable for
both interactive use and automation tasks. While Yosys fully

supports Verilog, its SystemVerilog support is partial,
focusing primarily on synthesizable constructs. Advanced
features like assertions and complex data types are not fully
supported.

SystemVerilog extends Verilog by introducing enhanced
data types, complex procedural constructs, and built-in
verification features. These additions make SystemVerilog
ideal for designing and modeling digital systems at both the
behavioral and RTL levels. However, the complexity of
SystemVerilog can pose challenges when transitioning from
RTL code to gate-level implementations in synthesis tools like
Yosys.

To ensure successful synthesis of SystemVerilog designs
in Yosys, it is crucial to adhere to specific coding guidelines
and avoid common pitfalls. Proper attention to synthesizable
constructs and coding practices is key to achieving
compatibility with synthesis tools.

II. BUILDING CUSTOM LINTERS

Some aspects of coding styles are often choices. In a
complex language like SystemVerilog, which is widely used
in the ASIC and FPGA design industries, there are multiple
ways to achieve a given design or testbench. To ensure code
consistency and adherence to team-specific styles, many
teams use static checkers (linters). Linters also help to identify
common pitfalls, such as unintended functionality or race
conditions.

While linting has long been used in the industry, open-
source options have historically been limited. However, with
the recent availability of open-source parsers, innovative
linting solutions have emerged. PySlint is one such linter,
developed on top of the open-source Slang/PySlang parser. It
enables users to create custom rules to check SystemVerilog
testbenches using a Python API. Inspired by the momentum
around PySlint, we developed YoYoLint to focus specifically
on ensuring compatibility with Yosys.

III. SYSTEMVERILOG SUPPORT IN YOSYS

The open-source version of Yosys officially supports
Verilog 2005. However, unofficial modifications have
extended its capabilities to include several SystemVerilog
features. These additions encompass advanced constructs like
enums and typedefs, which are part of SystemVerilog. One of
the challenges that we face often with Yosys is that there is no

mailto:ajeethak@asfigo.com
mailto:deepa@asfigo.com
mailto:saanvi.pradhan@gmail.com

well defined subset of SystemVerilog R|TL supported by
Yosys. Often Yosys throws non-descriptive errors messages
on unsupported features in SystemVerilog. We have captured
a few of these limitations below.

A. Two state data type in ports

 SystemVerilog's int data type with a two-state
representation is not supported for use in ports within Yosys.

B. MDA support

Yosys does not support multidimensional arrays (MDAs).
This limitation means that designs using MDAs cannot be
directly synthesized with Yosys. Users must work around this
restriction by converting MDAs into supported data structures
or flattening the arrays.

C. Parameters of type int

SystemVerilog parameters of type int are not yet supported
in Yosys. For instance, parameters declared with int cannot be
utilized, and users should opt for alternative types like integer
for compatibility with Yosys.

D. Streaming operators

Yosys does not support streaming operators, which are
used for operations like bit concatenation and repetition. This
limitation means that constructs involving such operators
cannot be synthesized with Yosys. To work around this, users
will need to use alternative methods to achieve similar
functionality in their designs.

E. Importing package

Basic package is supported. However, importing does not
work. Fully qualified package references work in Yosys.

F. User defined typedef

Yosys does not support typedef in packages

G. Adaptability to Different Coding Styles and Projects

Different teams and projects often adhere to their own
coding styles and conventions. A configurable YoYoLint
allows users to tailor the rules and checks to their specific
needs.

H. SVA support in Yosys

Yosys supports many advanced features of SystemVerilog
Assertions (SVA), such as:

- Default clocking and endclocking declarations

- Default disable conditions

- Definition and use of properties and sequences

- Definition and application of checkers

- Handling of arguments within sequences, properties, and
checkers

- Organization of sequences, properties, and checkers
within packages

Additionally, Yosys supports SystemVerilog’s `bind`
statement and deep hierarchical references, facilitating the
integration of formal properties with the design under test.

IV. IMPLEMENTATION

We use Python to implement these lint checks in
YoYoLint. We derive heavily from PySlint, which is a static
analysis tool for SystemVerilog testbenches built on top of the

Slang/PySlang parser. It leverages the capabilities of these
parsing libraries to analyze SystemVerilog code and identify
potential issues. The SystemVerilog code is parsed into an
abstract syntax tree (AST). The AST is a hierarchical
representation of the code's structure, providing information
about modules, declarations, statements, and expressions.

Below is a sample rule implementation:

def INT_PARAM_NYS(lvDecl):

 if (lvDecl.kind.name ==
'ParameterDeclarationStatement'):

 lvRID = 'INT_PARAM_NYS'

 lv_dt_s = str(lvDecl.parameter.type).strip()

 if (lv_dt_s == 'int'):

 msg = 'SystemVerilog parameter of type int is '

 msg += 'NYS - Not Yet Supported in Yosys'

 msg += str(lvDecl)

 yYLMsg (lvRID, msg)

As it can be seen, it is not a regexp based pattern matching
to find unsupported constructs in user’s code. Rather we use a
solid data model built on the lines of Verilog’s VPI (Verilog
Procedural Interface a.k.a. PLI).

We use a common messaging API named yYMsg, a sample
implementation of the same is below:

def yYLMsg(rule_id, msg):

 if (yYLRenabled(rule_id)):

 lvYylStr = 'yoYoLint: Violation: ['

 lvYylStr += rule_id

 lvYylStr += ']: '

 lvYylStr += msg

 print(lvYylStr)

As it can be noted in the API above, each message can be
enabled/disabled providing finer control to the user. Much of
these features are borrowed from PySlint.

V. BENEFITS

YoYoLint provides several benefits as a linter for
SystemVerilog RTL in conjunction with Yosys. It offers quick
identification of issues in SystemVerilog code that may affect
synthesis, such as unsupported features or potential syntax
errors. The tool generates clear, actionable messages, helping
users address problems before running Yosys. Additionally,
YoYoLint is extendable, allowing users to add custom rules
based on their specific needs and continuously improving
support for SystemVerilog features.

For instance, below is an error message from Yosys for an
unsupported feature:

 While Yosys is great in its value in terms of synthesis,
mapping, optimizations and generating bit streams etc. the
parser level errors are not the real focus of the tool. This is
precisely where YoYoLint fits in nicely.

VI. CONCLUSION

We present our contribution to YoYoLint for
SystemVerilog RTL linting, focusing on enhancing
configurability. This improvement allows users to tailor
linting rules to better fit various SystemVerilog design
projects, promoting greater adaptability and usability. The
solution not only addresses the current need for customizable
linting but also lays the groundwork for future developments
and extensions in YoYoLint. The paper concludes with
considerations for future research, including the exploration

of additional configuration parameters for specific YoYoLint
rules.

ACKNOWLEDGMENTS

We sincerely thank our mentor Ajeetha at AsFigo and
various team members who have helped us with running
YoYoLint on various designs and giving us valuable
feedback.

REFERENCES

[1] IEEE 1800 SystemVerilog LRM

[2] PySlint repository: https://github.com/ASFigo/PySlint

[3] PySlang - https://pypi.org/project/pyslang/

[4] Deepa Palaniappan – PySlint paper at ORConf 2023, Munich,
Germany

[5] TOML – https://toml.io

[6] tinyODIN https://github.com/ChFrenkel/tinyODIN

[7] OpenTitan: https://github.com/lowrisc/opentitan

[8] YoYoLint repository: https://github.com/AsFigo/yoYoLint

https://github.com/ASFigo/PySlint
https://toml.io/
https://github.com/ChFrenkel/tinyODIN
https://github.com/lowrisc/opentitan
https://github.com/AsFigo/yoYoLint

	I. Introduction
	II. Building custom linters
	III. SystemVerilog support in Yosys
	A. Two state data type in ports
	B. MDA support
	C. Parameters of type int
	D. Streaming operators
	E. Importing package
	F. User defined typedef
	G. Adaptability to Different Coding Styles and Projects
	H. SVA support in Yosys

	IV. Implementation
	V. Benefits
	VI. Conclusion
	Acknowledgments
	References

