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I. INTRODUCTION

With the growing demand for electronics, the development
cycles for new application-specific integrated circuits (ASICs)
designs are becoming increasingly shorter. To meet these
shorter design cycles, hardware designers apply the principles
of reusability and modularity of IP blocks in their designs.
Standard system-on-chips (SoCs) architectures with integrated
processors and common interconnects greatly reduce the de-
sign and verification efforts and allow reuse across projects.
However, this introduces additional complexity, as verification
of the ASIC also includes the software executed on the
integrated processors.

To enhance reusability, hardware IP blocks are often written
in higher-abstraction-level languages (e.g., Chisel, System-
RDL). These blocks rely on compilers—similar to software
compilers—to generate Verilog source files readable by RTL
simulation and implementation tools. Furthermore, at the
system level, modeling and verifying SoCs can be achieved
using C++ and SystemC, further highlighting the importance
of software compilation.

These requirements have led to the need for a build sys-
tem that supports typical hardware flows and tools, as well
as software compilation and cross-compilation for C++, C,
and assembly. Existing hardware build systems were found
inadequate (see II), particularly in terms of their minimal or
nonexistent support for software compilation (i.e., C++, C, and
assembly).

As a result, the Microelectronics section of CERN initiated
the development of a new build system called SoCMake
[1]. Initially developed as part of the System-on-Chip Radia-
tion Tolerant Ecosystem (SOCRATES) [14], which automates
the process of generating fault-tolerant RISC-V based SoCs
for high-energy physics environments, SoCMake has since
evolved into a generic open-source build tool for SoC gen-
eration.

II. EXISTING BUILD SYSTEMS

A limited survey of the available open-source build sys-
tems was conducted before embarking on the development of

SoCMake. At the time, FuseSoC [6] and hdlmake [15] were
popular hardware build systems, while silicon-compiler [16]
was still in its early development.

The most significant missing feature in all considered op-
tions was robust support for C++, C, and assembly, as well
as cross-compilation. Although some claimed support for C++
and C, it was rudimentary and unsuitable for complex projects.

FuseSoC uses descriptive .yaml files to describe the build
flow, which limits flexibility compared to imperative lan-
guages. In contrast, hdlmake and silicon-compiler use imper-
ative Python scripts, providing greater flexibility.

Both FuseSoC and hdlmake implement Makefile build
system generation from scratch, without relying on existing
build system generators. FuseSoC also implements a package
manager from scratch, while silicon-compiler goes a step
further by implementing an entire build system in Python.

Although the work done in these three build systems is
impressive, concerns arose regarding maturity and stability of
their implementations, particularly when compared to the well-
established features of CMake [2]. As the most widely used
build system for C++ projects, CMake also provides native
support for C and assembly. More importantly, CMake offers
a robust and versatile framework for managing and compiling
source files efficiently. As a result, the authors explored the
use of CMake as a hardware build system.

III. SOCMAKE

SoCMake is a thin API layer built on top of the CMake
language, as shown in Figure 1. SoCMake leverages CMake
as the build system generator and scripting language, while
relying on Make [3] as the build tool. Both are mature and
battle-tested tools extensively used in software development,
allowing SoCMake to avoid reimplementing build system
functionality from scratch for hardware designs.

Key concepts of SoCMake include the IP block abstraction
and support for EDA tool. By utilizing CMake scripting
language, users can define build flows for hardware or SoC
designs. These build flows are written imperatively in a
familiar CMakeLists.txt format.

A. IP block abstraction in SoCMake
The SoCMake IP block library is a wrapper around the

CMake INTERFACE [5] library. CMake INTERFACE li-



Fig. 1. Enter Caption

braries do not produce any output (e.g. shared, static library or
executable), instead, they carry information and properties. In
the case of an IP block library, they carry properties such as
source file lists, include directories, and compile definitions for
a given source language, as well as a list of linked IP blocks
in lower hierarchy levels. This information is later used by
EDA backend functions to populate command-line interface
arguments for EDA tools.

B. IP block VLNV naming

IP block libraries follow the VLNV (Vendor, Library,
Name, Version) naming scheme from Accellera’s IP-Xact
[8] standard. The components are separated with the ”::”
delimiter, similar to C++ scope resolution (e.g. VEN-
DOR::LIBRARY::NAME::VERSION). This approach allows
managing different versions of IP blocks and support using
the same IP from different vendors (e.g., I2C).

C. Linking IP blocks and Dependencies

Similar to how a CMake and C++ build flows link libraries
into executables, SoCMake follows the same concept for
describing the hierarchy and dependencies of a hardware
design. Linking IPs forms a tree structure of IP libraries, which
SoCMake flattens into a list while detecting duplicates. With
this flat list of IPs, it becomes easy to retrieve the associated
source files in hierarchical order. Additionally, targets from
linked IPs are shared with the dependent IPs.

D. EDA tool support

A typical SoC design may include various input languages,
as shown in Figure 2. However, EDA tools are commonly
limited to Verilog/SystemVerilog and VHDL. High-level lan-
guages, such as SystemRDL [11], typically require compil-
ers to convert their source files into one of the supported
languages. SoCMake provides support for both high-level
language compilers and EDA tools.

SoCMake simplifies the creation of Makefile targets
to invoke EDA tools. It achieves this through CMake’s
add custom command() [12] and add custom target() [4]
constructs, which are standard for generating Makefile targets
that trigger on input file changes.

Fig. 2. SoCMake EDA tools

EDA tool backend functions are implemented as CMake
functions that operate on IP libraries. These functions extract
a list of files, include directories, and compile definitions to
pass as command-line arguments to the EDA tool. Backend
functions can also modify file lists. For example, the SV2V
backend function converts and replaces SystemVerilog source
files with Verilog source files.

SoCMake provides support for a limited number of EDA
tools, and adding support for new tools is straightforward.

E. Package management

SoCMake allows the packaging of self-contained IP blocks,
which are usually part of a Git repository hosted on a remote
server. SoCMake can fetch the remote repository and integrate
it into the build flow.

CMake provides a built-in package manager through the
FetchContent [13] module, which can download dependencies
from a Git repository or any URL with a tarball or a zip
file. This process occurs at CMake configure time. It is rec-
ommended to use CPM.cmake [7], which provides additional
features and an easier-to-use interface.

F. Build parallelization

By relying on CMake and Make as the build system, SoC-
Make automatically supports parallel builds. Parallelization
can be achieved by simply passing the -j argument when
invoking make.

G. Unit testing

CMake provides a unit test driver through the ctest exe-
cutable. CTest [10] tests to be defined within the build system



itself, eliminating the need for an external unit test framework
tool. Additionally, CDash [9] can display regression results on
a web-hosted dashboard.

IV. CONCLUSION

This work introduced SoCMake, a versatile build system
capable of handling both hardware and software build flows
within SoC designs. Its support for IP block abstraction, EDA
tool integration, and package management addresses many of
the challenges faced in hardware design and verification. By
building on proven tools like CMake and Make, SoCMake
ensures a stable and extensible set of features for build
automation in hardware designs.

A stable core API 1.0.0 version is planned by the end of
2024. Following the stable release, we aim to expand the EDA
tool support to match the capabilities of other build systems.

REFERENCES

[1] SoCMake repository. Available: https://github.com/HEP-SoC/SoCMake
[2] CMake Documentation. Available: https://cmake.org/documentation/
[3] Make Manual. GNU Make Documentation. Available: https://www.gnu.

org/software/make/manual/make.html
[4] CMake Command: add custom target. Available: https://cmake.org/

cmake/help/latest/command/add custom target.html
[5] CMake Interface Libraries. Available: https://cmake.org/cmake/help/

latest/guide/importing-exporting/index.html#interface-libraries
[6] FuseSoC Documentation. Available: https://fusesoc.readthedocs.io/
[7] CPM.cmake: A CMake-based Dependency Manager. Available: https:

//github.com/cpm-cmake/CPM.cmake
[8] IP-XACT Documentation (IEEE 1685-2014). Available: https://

ieeexplore.ieee.org/document/6809389
[9] CDash Documentation. Available: https://cdash.org/

[10] CTest Documentation. Available: https://cmake.org/cmake/help/latest/
manual/ctest.1.html

[11] SystemRDL Standard (IEEE 1685-2009). Available: https://ieeexplore.
ieee.org/document/5960759

[12] CMake Command: add custom command. Available: https://cmake.org/
cmake/help/latest/command/add custom command.html

[13] CMake FetchContent Module. Available: https://cmake.org/cmake/help/
latest/module/FetchContent.html

[14] M. Andorno, M. Andersen, G. Borghello, A. Caratelli, D. Ceresa,
J. Dhaliwal, K. Kloukinas and R. Pejasinovic, JINST 18 (2023) no.01,
C01018 doi:10.1088/1748-0221/18/01/C01018

[15] Hdlmake Documentation. Available: https://hdlmake.readthedocs.io/en/
master/

[16] Silicon compiler Documentation. Available: https://www.
siliconcompiler.com/


