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Abstract—We present OpenLane 2, a re-imagining of the
world’s most popular open-source RTL-to-GDSII flow as a
modular infrastructure for flow creation. We show how the
infrastructure has been architected to make flows more flexible,
and crucially, repeatable. We demonstrate how we enhanced
the flow’s distribution and delivery using the Nix build and
deployment system. Finally, we show some of the active current
uses of OpenLane 2 in industry and academia.

Index Terms—eda, electronic design automation, asic, asic
flows, digital design

I. INTRODUCTION

The releases of OpenROAD in 2019 [1I] and the Open
Source Google/Skywater 130nm Process Design Kit (PDK)
in 2020 [2] heralded what could only be described as a
revolution in breaking down the barriers to application-specific
integrated chip (ASIC) development. Much like Yosys [3]]
and Project IceStorm [4] enabled a vibrant open-source field-
programmable gate array (FPGA) scene, the once-secretive
ASIC industry was now made accessible free of charge and
without restrictions to academia, corporations, and hobbyists
alike. This was further accelerated by the Google OpenMPW
program, where Google sponsored a number of multi-project
wafer (MPW) shuttles for open source designs, letting design-
ers for the first time design, manufacture and get an ASIC
chip without signing a single non-disclosure agreement [5].

Preparing for the mass enablement of a new, wide audience
to try chip design was, however, no small task. It was quickly
made apparent that the otherwise disjoint open-source utilities:
Yosys, OpenROAD, Magic [|6], KLayout [[7] needed to be har-
monized into a turn-key flow going all the way from register-
transfer-level (RTL) Verilog code to the final graphical layout
used by the foundries, GDSII. This culminated in the release
of OpenLane [8]][9] in late 2020, which was positioned as the
primary flow for the Google OpenMPW project. OpenLane
has since endured as the world’s most popular open-source
RTL-to-GDSII flow with over 1200 stars on GitHub [[10], in
no small part due to its ease of installation and use; until 2024,
OpenLane was the only flow to bundle its dependencies in the
form of a container so users may install and use it within a
matter of minutes.

Yet, OpenLane was not without its limitations. For most
digital MPW projects, few ran into issues, but under the
hood, the flow amounted to little more than a set of Tcl

procedures haphazardly manipulating the global state and
calling tools. Additionally, Tcl’s lack of data-types and lack
of a separation between data and code makes it very difficult
to maintain a large and robust codebase which impeded our
and community contributors’ ability to extend OpenLane—
despite these very features making Tcl an excellent embedded
language for adding a command-line interface to a large utility
which it owes its popularity in the EDA space to. Finally, the
lack of modularity made it borderline impossible to mix-and-
match open source and proprietary tools, which combines the
flexibility of the former with the robustness of the latter to
ensure a great quality of results.

We thus endeavored to re-imagine OpenLane - maintain its
trademark ease-of-installation and ease-of-use, yet, do so re-
envisioning OpenLane as not just a flow, but as an infrastruc-
ture with which flows can be created, extended, manipulated
and maintained, with the primary goal still maintaining full-
compatibility with its less modular predecessor. We referred to
this project as OpenLane 2, which we released in late 2023.

II. RELATED WORK

Unlike in late 2020 through early 2021, there is no shortage
of options of open-source ASIC flows to choose from. A
number have since endeavored to create open-source RTL-
to-GDSII flows; both from industry (SiliconCompiler [11]),
Academia (mflowgen [12], Hammer [[13]]) and joint ventures
between industry and academia (OpenROAD Flow Scripts).
The current second-most popular flow OpenROAD Flow
Scripts (ORFS), a GNU Make and Tcl-based flow which acts
as a reference implementation of flows using OpenROAD.
While more modular than OpenLane, the issues from the lan-
guages used largely persists: Makefiles make it very difficult
to encapsulate state or implement complex flow logic, though
that conversely enables interesting experiments such as Bazel-
OREFS [14], which uses the hermetic and reproducible Bazel
[15] build-system to bring better traceability and incremental
building to ASIC.

Another popular flow is SiliconCompiler, an option devel-
oped by a team headed by Andreas Oloffson, one of the
founders of the OpenROAD Project. Unlike either OpenLane
or OpenROAD, SiliconCompiler is presented as a build-
system: “Make for chips”, as it were, where all chips would
be implemented as a Python script using the SiliconCompiler
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Fig. 1. A high-level view of OpenLane 2’s Architecture

library, and ASIC implementation flows can be represented
as graphs. The project is very ambitious and covers a lot
more ground than either OpenLane or OpenROAD Flow
Scripts, however, with that came complexity to the end user as
configuring and running a flow with a single Tcl or JSON file
in the style of OpenLane is not possible. Additionally, unlike
OpenLane or OpenROAD Flow Scripts, SiliconCompiler never
provides a batteries-included option for installation or running,
electing to provide remote machines to alleviate installation
issues. Shifting this burden to the users, however, is a prime
area for misconfiguration issues to happen or for mismatched
versions to cause crashes, severely degrading the flow quality.

All of these projects are valiant efforts in their own right,
however OpenLane does (and continues to) occupy a certain
niche that none of them adequately serve: (relative) ease-of-
installation and absolute ease-of-use. In OpenLane, packag-
ing and distribution is a first class concern co-equal with
the flow, and OpenLane 2 includes a default/reference flow
named “Classic” that still, like OpenLane 1, can be configured
with exactly one Tcl or JSON file (indeed, in overwhelming
majority of cases the same as OpenLane 1).

III. ARCHITECTURE AND IMPLEMENTATION

A key part of OpenLane 2’s design is the high-level architec-
ture. The software architecture for OpenLane 2 is fully codified
and rather strict to ensure code quality and modularity. The
architecture is composed of a unified API, which can then be
used either via commandline using the openlane command
or programmatically. This is done to ensure users can easily
create custom flows using the OpenLane 2 infrastructure,
having access to the very same tools OpenLane developers
do.

OpenLane 2 is implemented in Python 3, the world’s most
popular programming language (in no small part due to current
Al boom) [16]. Regardless, as a dynamically typed language,
Python makes it very difficult to maintain large, robust code-
bases, which is why we include static type checking using
mypy [17]; which greatly enhances the API’s consistency and
helps avoid otherwise frequent type errors. The Python API

can be used directly from Python using import openlane,
which also enables OpenLane to be easily integrated into the
popular Google Colaboratory [18|] environments. The Python
API is composed of four modules, state, step, £1low, and
config, as shown in Figure [I]

A. state

At the core of OpenLane 2 lies the State module. The State
module is centered around its namesake State object, which
is an encapsulation of the current status of a design under
implementation. Specifically, captured in the form of a an
immutable mapping from Design Formats - various text and
binary representations of a design (such as Verilog Netlist,
Design Exchange Format (DEF), etc.) to file paths.

As the structure is immutable, creating new States requires
creating a copy of the object. This is by design, so the flow
may be programmatically “rewound” to any point (as no states
are discarded.)

B. step

The Step module centers around its namesake, the Step
class. The Step class is an encapsulation of a transformation
on the State object. Specifically, each Step expects a Config-
uration object and a State object with one or more Design
Formats as its input, and emits a new, altered State as its
output.

Steps operate within what is known as a step directory. The
step directory acts as a form of “scratch space” for a Step: it
is where steps are allowed to create intermediate and output
files (including reports, logs, and whatnot.) Steps will save a
copy of their inputs and output state in a JSON format within
the Step directory for traceability.

Steps in OpenLane abide by a set of strictures that serve
an ultimate goal: The same step with the same input
configuration and same input state must emit the same
output. The strictures are as follows:

1) Steps are not allowed to create any files outside of the
step directory.

2) Steps are not allowed to mutate any files. If the tool does
not support out-of-place modification, Steps must copy
the files into the step directory then modify the copies.

3) Steps do not modify the input configuration or state
object.

4) Steps do not rely on filesystem paths outside of those
listed in the configuration object thereof with the ex-
ception of temporary directories and $SPATH to find
executables.

All of these strictures work towards to goal of making
OpenLane 2 steps hermetic. A hermetic build process is a
process for which all inputs are explicitly and unambiguously
specified externally to the build process itself [[19]. Hermeticity
is all but a necessary precursor for what is the actual goal,
reproducibility: i.e., the same set of inputs should produce the
same set of outputs, which logically is not possible without
an explicit and unambiguous set of inputs.



While pure hermeticity would be too much of a restriction
upon engineers, requiring hashes of inputs from the filesystem
or similar, OpenLane Flows and Steps are highly repeatable
unless either the Flow or Step in question violates a stricture
or attempts to access the network or a user chooses to modify
files on their filesystem haphazardly. Nevertheless, this in
turn enables a limited form of reproducibility across different
setups, which helps speeds up the diagnosis of bugs and faults
within the flows, steps or inputs to ensure quality.

Outside of those strictures, Steps are free to use one or more
executables or libraries to achieve their stated functionality,
which is usually an EDA process of some kind: an example
would be Synthesis of a list of Verilog RTL files, or Floor-
planning an OpenROAD database.

With these strictures in place, results from OpenLane on
the same operating system tend to be reproducible, even across
hardware architectures, e.g., the step Yosys.Synthesis re-
turns an identical result on both x86 and ARM-based devices.

Steps have a string-based ID that is registered to a global
factory method so they may be retrieved by name. This is
useful for constructing custom flows which will be detailed
later. This global factory method has no effect on the exe-
cution of a successfully compiled flow and does not affect
reproducibility. OpenLane 2 comes with a number of built-in
steps chiefly based on those from its predecessor.

C. flow

Much like Step, the Flow module centers around the Flow
class. While Steps can technically be run individually, Flow
classes are aggregations of steps, which offers a number of
advantages:

o Flow control: Flows may include logic as to if and
how the steps would be run, including skipping steps,
running only some steps, or even running multiple steps
in parallel.

o One-shot configuration: Flows compile the configura-
tions for all steps simultaneously. This verifies ahead of
time that no two incompatible steps are used within the
same flow.

An invocation of a Flow creates a run directory, which
would contain all the step directories from earlier. Flows are,
in fact, responsible for giving names to the step directories.

An abstract child of the Flow class is SequentialFlow.
Sequential Flow is used for the common Flow pattern where
Flows are simply a number of Steps run serially, where
State; = Step;(State;—1). OpenLane 2, by default, uses a
Sequential Flow named Classic that emulates the behavior of
the OpenLane 1 flow.

Custom flows may be written in Python using the API, but
for convenience, they may also be constructed from within
configuration files by simply listing Step IDs. This allows PnR
engineers to quickly construct custom flows without writing
any Python code.

Flows require a configuration object as an input, alongside
an optional initial state object. If an explicit initial state object
is not provided, the latest State saved to the Flow directory

will be used. If the Flow directory is newly created or empty,
an empty initial state will be created. This behavior allows
flows to be stopped and resumed, or multiple runs to branch
off from an initial run.

Flows have a string-based ID that is registered to a global
factory method, so they may be retrieved by name. This allows
flows to be picked from the commandline or for configuration
files to specify their own flow.

D. config

Both Steps and Flows may be configured to alter their
behavior. These configuration options are exposed to users via
configuration variables. These variables essentially consist
of a name, a type, and an optional default value. There exists
three kinds of those variables:

« Universal: Variables that exists for all flows and all steps,
containing critical information about the current design or
process design Kkit.

« Flow-specific: Variables that exist as part of a specific
Flow (but not its constituent steps). Typically, those are
variables that control the flow execution in some manner.

« Step-specific: Variables that exist as part of a specific
Step. These either provide the Step with essential infor-
mation for execution or controls the step’s execution in
some manner.

Each variable may also be marked as a PDK or non-PDK
variable. This only affects where the step gets its default
value; non-PDK variables have their default stored in code,
whereas PDK variables have their defaults stored in a PDK
configuration file (which comes included with an installed
PDK.) The user may use use configuration files (user configs)
to explicitly specify the value of either type of variable.

Each Variable may be assigned a default value, but are
otherwise required to be specified by either the PDK or the
user. Variables can be of option types, a sum type of None and
either a scalar or product type [20], where they hold an implicit
default of None. All variables will ultimately share the same
namespace for an entire flow, so if two steps have two variables
with the same name but different types or default values, the
steps are considered mutually exclusive and incompatible.

The configuration variables of a flow are considered to be
the sum of the universal flow configuration variables, steps’
configuration variables plus any flow-specific configuration
variables. These variables are then used to compile a user-
input Tcl, JSON, or YAML file into an immutable mapping
representing a particular flow run’s configuration. This im-
mutable mapping is then filtered per-step so each step only
has access to values for configuration variables it explicitly
declares (a sore spot with the global state/configuration from
OpenLane and other flows.)

IV. PACKAGING AND DISTRIBUTION

For the longest time, OpenLane’s primary appeal was its
ease of installation using Linux userspace containers, more
specifically, using Docker images. Unlike traditional installa-
tion methods (apt, yum, etc.), containers mostly guarantee
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Fig. 2. A diagram showing how Nix is used to bundle OpenLane utilities

a consistent experience across different Linux distributions
(and indeed across operating systems by virutalizing Linux,
which adds Windows and macOS compatibility.) Container
technologies, however, come with a number of unpleasant
limitations, specifically:

1) Complexity around using GUIs: GUIs for Docker
applications require X11 forwarding to be set up, which
requires special software on macOS and the Windows
Subsystem for Linux, and is frequently interfered with
by kernel-based security solutions such as SELinux or
AppArmor.

2) Lack of full filesystem access: Interactions between
filesystems require an explicit bind mount between the
primary userspace and the container userspace. This is
actually desirable behavior in some cases for security
reasons, but ends up being a hindrance when users need
to, for example, use a design located on an NFS store or
similar.

3) Giant update deltas: Docker images are composed
of layers, whose caching is naively invalidated if the
command is changed to create a layer or if any previous
layers are changed, even if there is no causal relationship
between the two layers (i.e. they affect different parts of
the filesystem.)

To address all of these issues, we adopted the Nix build
utility and deployment system [21]]. Nix is a tool for repro-
ducible builds powered by a functional programming language
of the same name, supporting both (systemd) Linux and
macOS for both x86-64 and ARM64 machines. With complete
hermeticity (including but not limited to performing all builds
in a sandbox), Nix build tasks have reasonably reproducible
results (unlike Docker, where most image builds are non-
hermetic and are directly exposed to changes in internet files)
that can be cached. By making a public binary cache available,
users may get a full, native OpenLane shell environment on
either macOS or Linux by simply typing nix—-shell in the
OpenLane folder.

Nix is also sufficiently flexible that it is possible to generate
a Docker image from a Nix-based environment, which is

useful for containerized deployments and/or holdouts from
OpenLane 1 that do not wish to install Nix. Nevertheless, the
new environments provide native GUI support on both Linux
and macOS, full native filesystem access, and smaller deltas
(as only updated tools and their dependencies need to be re-
downloaded), all while still guaranteeing functionality across
Linux distributions and versions of macOS 11+. The only
improvement possible upon this delivery method is bespoke
builds for every Linux distributions.

Alongside the Nix builds, OpenLane 2 is also distributed
using the Python Package Index (PyPI), which can be accessed
using the PIP utility. This provides an avenue to automatically
pull and use the Docker image (if the —-dockerized
command-line flag is used) or for those who want to use their
custom-built tools at their own risk. Figure [2] shows all the
ways Nix and PIP package could be used.D

Plugins

Using Nix, OpenLane 2 bundles all Steps and utilities
required for the default Classic flow, which are: Verilator,
Yosys, OpenROAD, Magic, Netgen, and KLayout. However,
it is unreasonable to expect the infrastructure to include all
possible EDA tools for all possible Steps and Flows that users
may come up with.

To allow users to add Flows and Steps without altering
OpenLane itself, OpenLane supports the concept of plug-
ins. Plugins are Python packages that start with the prefix
openlane_plugin_ that add more Steps and Flows to their
respective factory methods. Plugins also are given a Nix-based
API to include any free-and-open-source utilities. However,
plugins may require their dependent utilities to be installed
separately, which is the only option for plugins that support
proprietary software. The plugins and built-in steps can then
be used in harmony to create custom flows as shown in Figure

Bl

V. ADOPTION

While the Classic flow is still in nominal beta pending
silicon validation, OpenLane has received moderate adoption
in some areas in both academia and industry, both as a pure
open-source flow and as a mixed proprietary and open-source
flow. A subset of these adopters follow:

A. Industry

1) Efabless: OpenLane 2 has been used internally at Efa-
bless for a number of projects and entirely superseded its
predecssor for all non-trivial chip design: using both the
Classic flow and bespoke flows for complex designs. It has
been deployed for a number of projects, including but not
limited to: a re-implementation of Caravel, the next generation
of Caravel, ”Caravel Panamax,” and the Cheetah TinyML chip.

Internally, we have also tested a number of plugins, most
importantly a plugin for Synopsys® EDA tools which we are
actively using. We are also currently developing a plugin for
an alternatives to OpenROAD, including iEDA [22]], to expand
the options for tools available.
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In all instances, OpenLane 2 was positively reviewed
by place-and-route (PnR) engineers for its superior state-
management (allowing for branching explorations of timing
repair parameters, for example). Additionally, we had also
and its ability to seamlessly seamlessly integrate Synopsys®
DesignCompiler™ for increased area savings and Synopsys®
PrimeTime™ for a more reliable signoff process for highly
complex SoCs.

2) Tiny Tapeout: OpenLane 2 has also been used for every
Tiny Tapeout [23] since Tiny Tapeout 4, where a custom
OpenLane 2-based flow has been used to harden the final top-
level multiplexer and the Classic flow was used to harden every
single digital user project.

B. Academia

1) Purdue STARS: OpenLane 2 with the plugin for Syn-
opsys® EDA tools was successfully used for the Purdue
University STARS program, where students learned the basics
of chip design using an OpenLane 2-based flow incorporating
Design Compiler™ and PrimeTime™, which enabled the
use of industry-standard proprietary utilities with minimal
configuration.

2) Piel: OpenLane 2 is currently in use by Photonic
Integrated ELectronics (Piel) [24]. A PhD project at the
University of Bristol by Dario Quintero, Piel aims to provide
an integrated workflow to co-design photonics and electronics
for classic and quantum computing: OpenLane 2 is leveraged
for hardening electronics.

VI. CONCLUSION

We have presented OpenlLane 2, a reimagining of the
world’s premier open-source RTL-to-GDSII flow as an ex-
tensible architecture for creating countless flows while main-
taining ease of installation, use and responsibility. We have
outlined the architecture for OpenLane 2 and have shown why
each design decision was taken and how it enhances the user

experience and the reproducibility and traceability of flows
built using OpenLane 2. We have shown how OpenLane 2
bundles its open source utilities using Nix, and yet using
plugins, supports proprietary utilities with relative ease. As
stated, OpenLane 2 internally at Efabless for a number of
projects, and also readily adopted by the community across
both industry and academia.

There are many possible avenues for future research and
development of the OpenLane 2 infrastructure. One such
avenue would be programmatic enforcement of architectural
strictures to ensure users cannot write steps and programs
which may cause non-repeatable behavior. Another possible
avenue of research is in the realm of step portability, namely,
trusted remote execution of steps, which could be used to
provide secure access to proprietary utilities or simply off-
load workflows to more capable machines.
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to create a plugin in Python and bundle utilities using Nix.
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