
Simulating a Million-Core System with Switchboard
Steven Herbst, Noah Moroze, Edgar Iglesias, Andreas Olofsson

Abstract—Immense hardware systems are needed to train
state-of-the-art machine learning applications such as large
language models. The design process for such hardware requires
simulation for both architectural exploration and design veri-
fication; this can be challenging with traditional simulation ap-
proaches due to long build and run times. In this paper, we show
how to make simulation tractable for large hardware systems
with Switchboard, our open-source modular simulation frame-
work. Switchboard facilitates scalable simulation by connecting
prebuilt simulators of reasonably-sized hardware blocks through
high-performance shared-memory queues. Each queue conveys
a latency-insensitive interface, eliminating the need for explicit
synchronization, which can otherwise hamper performance. Us-
ing Switchboard, we successfully performed an RTL simulation
of a million-core system on thousands of cloud compute cores.
The total time to build the design and simulate a distributed
matrix multiplication was under 15 minutes, demonstrating the
agility of our approach.

I. INTRODUCTION

State-of-the-art machine learning applications such as large
language models and autonomous driving require vast compute
resources to train, motivating the development of various large-
scale accelerators. For example, NVIDIA’s GB200 NVL72 [1]
rack design consists of 72 NVIDIA Blackwell GPUs. Cerebras
Wafer Scale Engine 3 [2] consists of 900,000 cores on a wafer,
which can be used in clusters of up to 2,048 nodes. Tesla Dojo
ExaPOD [3] consists of 1,062,000 cores connected together in
a hierarchical fashion.

Unfortunately, detailed hardware simulation at this scale
is usually slow in terms of the time required to build and
run simulations; this limits opportunities for verification and
architectural exploration. Parallel RTL simulation, which seeks
to distribute RTL simulations across multiple cores, is a way
to address the runtime issue [4], [5]. However, scalability can
be limited if cores need to reside in the same host system, and
build times can still be long. Runtime may also be improved
by compiling designs onto one or more FPGAs [6], but at the
cost of even higher build time.

In this paper, we present a way to solve these prob-
lems using Switchboard, our open-source modular simulation
framework. We focus on hardware systems composed of
reasonably-sized blocks that communicate with each other
through latency-insensitive interfaces, a time-tested design
methodology that offers many benefits [7]. With Switchboard,
a simulator is built for each unique block, which is fast
because the blocks are reasonably-sized. At runtime, a prebuilt
simulator is launched for each block instance, with block

A. Olofsson is with Zero ASIC Corporation, Lexington, MA 02421 (email:
andreas@zeroasic.com). S. Herbst, N. Moroze, and E. Iglesias were with the
same company when they contributed to this work.

simulations communicating through shared-memory queues
that convey latency-insensitive interfaces.

Our approach addresses both build time and run time. Builds
are fast because only a small number of reasonably-sized
blocks need to be compiled, and these builds can run in
parallel. Runtime performance is good due to the partitioning
of blocks across latency-insensitive interfaces, avoiding the
need for explicit synchronization between simulators.

To demonstrate the effectiveness of our framework, we used
it to simulate a simplified mockup of a large accelerator:
a million-core array of PicoRV32 CPUs, programmed to
compute a distributed matrix multiplication. The simulation
was distributed across thousands of cloud compute cores using
Amazon Web Services Elastic Container Service (AWS ECS);
total simulation time, including build time, was under 15
minutes.

This paper is a shortened version of a manuscript posted
on arXiv [8]. Interested readers may find more details about
the Switchboard framework and its applications in the arXiv
paper.

II. SWITCHBOARD OVERVIEW

Switchboard is a modular simulation framework, meaning
that it allows simulators for hardware submodules to be built
independently and connected at runtime. It is open source [9],
released under Apache License 2.0, and is installable from
PyPI as switchboard-hw.

An overview of the framework is shown in Figure 1.
We start by enumerating the unique modular blocks in a
design. Each unique block is wrapped by tying off its latency-
insensitive channels to bridge modules that connect to single-
producer, single-consumer (SPSC) shared-memory queues. A
simulator is built for each wrapped block, after which point
full system simulations can be constructed by running multiple
instances of each block simulator, with transmit/receive pairs
of channels “wired together” by configuring the corresponding
bridge modules to point to the same shared memory queues
at runtime.

Shared-memory queues are a natural choice for connecting
hardware simulators because they propagate backpressure. An-
other benefit of these queues is that they are fast, since system
calls are only needed for initial setup, not to move data while
a simulation is running. Finally, they are straightforward to
implement for a variety of hardware model implementations.
Switchboard supports mixtures of Verilog simulations, FPGA-
based emulators, software models, and even SPICE models.

As a software framework, Switchboard provides a fast
shared-memory queue implementation (C++), Verilog bridges
for connecting latency-insensitive interfaces to queues (DPI

Block A

Enumerate
unique hardware
blocks

Build a simulator for
each, exposing
latency-insensitive
channels

Sim A

Connect simulator instances
through shared-memory
queues

Block A

Block B

Sim B

Block B

Sim B

Sim A Sim A

Sim A

Sim B

Fig. 1. Our modular simulation approach.

and VPI), Python-based automation for building and running
simulations, and a Python API for driving AXI, AXI-Lite, and
Universal Memory Interface (UMI) interfaces.

Switchboard enables large simulations to be constructed
programmatically, including making decisions about how to
partition RTL blocks among one or more simulator processes;
it generates Verilog code as necessary to implement these
decisions. When multiple RTL blocks are grouped together
in a single simulator process, we refer to that process as a
“single-netlist simulation.”

A. Performance Simulation

Our modular simulation approach yields functionally correct
results as-is, but requires modification to estimate perfor-
mance. This is due to the fact that models run at different
rates, and because there is real-world latency in sending data
from one model to another.

Figure 2 illustrates this issue. Block A, running in Sim A,
sends data to Block B, running in Sim B, which processes
the data and sends the result back to Block A. Assuming that
Block B takes N clock cycles to process the data it receives,
Block A should ideally measure the processing delay (in
cycles) to be: NFA,sim/FB,sim. However, unless a simulation
is running exactly in real-time, the simulation clock rate will
be different from the wall time clock rate. Hence, the actual
processing time measured by Block A is NFA,wall/FB,wall,
plus communication latency added by the shared-memory
queues and associated bridges.

To correct these issues, we need to slow down simulations
A and B so that their wall time clock periods are large
compared to the communication latency, while maintaining
FA,wall/FB,wall = FA,sim/FB,sim. Switchboard provides a
mechanism for doing this by sleeping to fill time as needed
to achieve a particular simulation rate. Since Switchboard can
only slow down simulators, not speed them up, the frequency
target set with Switchboard ends up being a maximum fre-
quency bound. As the maximum frequency bound is lowered,

Sim A

Block A
Bridge
NTX

Sim B

Block B

N cycle
processing

time
Bridge
NRX

Bridge
NRX

Bridge
NTX

Tcomm

Tcomm

Fig. 2. Nonidealities in performance simulation when conveying latency-
insensitive interfaces between simulators.

Single-netlist sim

UMIRISC-V
CPU

RISC-V
CPU

UMI

RISC-V
CPU

RISC-V
CPU

UMI

UMI

…

…

… …

AWS ECS Task

SBSingle-
netlist
sim

Single-
netlist
sim

SB

Single-
netlist
sim

Single-
netlist
sim

SB

SB

…

…

… …

AWS ECS Cluster

TCPAWS
ECS
Task

AWS
ECS
Task

TCP

AWS
ECS
Task

AWS
ECS
Task

TCP

TCP

…

…

… …

10x25 CPUs 4x4 sims 25x10 AWS ECS Tasks

Fig. 3. Architecture of the million-core simulation.

the effects of communication latency are attenuated, causing
performance measurements to converge to ground truth.

III. MILLION-CORE SIMULATION

We used Switchboard to simulate an array of one million
RISC-V cores, representing a simplified mockup of a large
hardware accelerator. This section describes the architecture
of the simulation and experimental results.

A. Architecture

The architecture of the million-core simulation is illustrated
in Fig. 3. We created a single-netlist simulation of a 10× 25
array of RISC-V processors and ran a 4 × 4 array of these
simulations in an AWS ECS task. These tasks were arranged
in a 25 × 10 array in an ECS cluster, resulting in a total of
one million RISC-V cores. Fargate was chosen as the ECS
capacity provider because it avoided the need to keep cloud
resources running when not in use, helping to reduce costs
when working with a large number of tasks.

Each ECS task used 16 vCPUs, the maximum allowed with
Fargate, and 32 GB RAM. Considering that we used a 25x10
array of ECS tasks, the total number of vCPUs involved in
the simulation was 4,000.

The RISC-V processor used in this experiment was Pi-
coRV32 [10], a small, open-source 32-bit implementation.
Each processor was wrapped with additional hardware that
enabled it to communicate with its neighbors to the north,
east, south, and west. For a sense of scale, this unit cell could
be implemented with about 20k gates (198k transistors) in the
ASAP7 [11] open-source PDK.

We used the RISC-V processor array to implement the ma-
trix multiplication Y = A×B as illustrated in Figure 4. Each
CPU stored an element of B, performing one multiplication

CPU
B11

CPU
B12 …

CPU
B21

CPU
B22

… …

…

Y11 , Y21 , … Y12 , Y22 , …

A11 , A21 , …

A12 , A22 , …

CPU

+

Bij

X

Fig. 4. The RISC-V processor array was used to compute matrix multiplica-
tions in a distributed fashion.

TABLE I
TIMING BREAKDOWN FOR THE MILLION-CORE SIMULATION

Name Time Percentage

Launch 250 ECS tasks 2m 30s 23%

Wait for ECS tasks to boot 1m 20s 12%

Run simulation 7m 4s 65%

Total 10m 54s 100%

and one addition for each packet it received. The transposed
rows of A flowed into the array on its west edge and moved
eastward, while partial sums flowed from north to south, with
the rows of Y appearing on the south edge.

B. Building and Running the Simulation

Only one RTL simulation needed to be built to run the
million-core simulation: the single-netlist simulation of a
10×25 grid of PicoRV32 processors. This modestly-sized
simulation took 3m 26s to build on a local machine1, and
the resulting simulation binary was uploaded to AWS Simple
Storage Service (S3) where it could be accessed by ECS tasks.

Each ECS task ran 16 copies of this simulation in a 4×4
grid, and the ECS tasks themselves were arranged in a 25×10
grid, resulting in a total of 4,000 copies of the simulation.
The simulation took 10m 54s to run a single 1000×1000 by
1000×1000 matrix multiplication, with the timing breakdown
shown in Table I. Including build time, it was possible to go
from RTL to a behavioral simulation result in under 15m.

C. Cost Analysis

The million-core simulation was run in the Northern Califor-
nia AWS region (us-west-1), where the cost of Fargate re-
sources was $0.04656/vCPU/hr and $0.00511/GB memory/hr.
Hence, the cost of running the million-core simulation was
$41.26. Although not trivial, this is likely reasonable within the
context of large-scale hardware design project. In normalized
terms, the cost of simulation was approximately 0.16 cents per
megagate-megacycle, a value that could be used in back-of-
the-envelope cost estimations for other systems.

12.8 GHz quad-core Intel Core i7 with 16 GB 1600 MHz DDR3 memory

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Number of RISC-V Cores

500

1,000

1,500

2,000

Bu
ild

 T
im

e
(s

)

MT Verilator Build Time vs. Design Size

Fig. 5. Build time for different design sizes when using multithreaded
Verilator instead of Switchboard.

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Number of RISC-V Cores

20

40

60

80

100

Si
m

ul
at

io
n

Ti
m

e
(s

)

MT Verilator Simulation Time vs. Design Size

Fig. 6. Time to simulate one matrix multiplication for different design sizes
when using multithreaded Verilator instead of Switchboard.

D. Comparison to Multithreaded Verilator

To explore the value of using Switchboard, we consider an
alternative: building and running a single multithreaded (MT)
Verilator simulator for the entire RISC-V array on a large
machine. For this study, the large machine used was an AWS
EC2 instance of c6a.48xlarge, which provides 192 vCPUs
and 384 GB RAM.

To start, we examined build time, scaling up the size of
the RISC-V array in factors of two while recording the time
needed to build an MT Verilator simulator. The result is shown
in Figure 5, demonstrating a fairly linear trend. We stopped at
8,192 cores, where the build time had grown to around half
an hour.

Although it is unknown whether a 1M core simulation could
be built in any amount of time on this machine, we can
arrive at a very rough estimate by extrapolating the trend line.
This is clearly problematic because we are extrapolating over
two orders of magnitude, however it is still useful to get a
sense of how long such a build would take. The extrapolation
yields an estimated million-core build time of 3.1 days, with is
1,300x slower than with Switchboard. Given that other work
[12] reported a 2.9 day build time for a smaller design (10B
transistors), this is likely an underestimate.

For each design size in the experiment, we measured how
long it took to simulate a single matrix multiplication, as
shown in Figure 6. The trend is linear, though we suspect it
would become at least quadratic at larger design sizes. The

1,000 10,000
Max Simulation Rate (Hz)

0

200

400

600

800

1,000
Th

ro
ug

hp
ut

 (c
yc

le
s/

ro
w) Measured Throughput vs. Max Sim Rate

With Switchboard
MT Verilator (ground truth)

Fig. 7. Effect of varying the Switchboard maximum simulation rate on
measured throughput (accuracy indicator).

reason is that the number of threads for each design size
was selected for best performance, with the 1,024-core design
using 32 threads and the 8,192-core design using 128. Since
the machine itself only has 192 vCPUs, the thread count could
not be productively increased much more for larger designs.
Once all vCPUs are active running simulation threads, the
simulation rate would decrease at least linearly with increasing
design size, while the number of cycles to simulate would
increase linearly, leading to a quadratic trend.

As a result, we believe that extrapolating the linear trend
line of simulation time should yield a conservative estimate,
in the sense that it would be biased against Switchboard.
Performing that extrapolation, we predict that the MT Verilator
simulation time for the million-core array would be at least 3h
27m, which is 19x slower than with Switchboard. This seems
plausible, given that the Switchboard-based simulation was run
on a cluster whose vCPU count was greater than that of the
single-machine simulation by a similar factor (21x). Since the
cluster used far more vCPUs than are available in a single
EC2 instance, Switchboard was the only way to parallelize
the simulation to this degree.

Our final comparison entails using MT Verilator to produce
a cycle-accurate ground truth against which we measure the
accuracy of Switchboard simulations2. The performance mea-
surement used in this experiment was the number of clock
cycles taken to produce a single row of the matrix multipli-
cation output. As explained in Section II-A, the main control
knob for accuracy in Switchboard is the maximum frequency
bound. We varied this bound over a wide range while taking
performance measurements, with the result shown in Figure 7.
As predicted, the performance measurement converged to a
value close to ground truth as the max simulation rate was
lowered, and for simulation rates of 8 kHz and lower, the
accuracy with respect to ground truth was better than 5%.

IV. RELATED WORK

We are aware of only one other research publication about
a million-core simulation [13], which used a framework called
MuchiSim. MuchiSim employed fast functional processor

2Since the largest MT Verilator simulation was of an 8,192-core array, that
was the array size chosen for this comparison.

models in conjunction with cycle count performance models.
In contrast, the experiment described here used RTL directly.

Metro-MPI [12] and SimBricks [14] are similar to Switch-
board in that they support RTL-based modular simulation. In
other words, they partition a large RTL design along interfaces
and build simulators for the resulting subdesigns, connecting
the simulators together at runtime. However, these frameworks
have been evaluated on a smaller scale than Switchboard:
1,024 cores (10B transistors) for Metro-MPI, running on a 48-
core HPC system, and 1,000 simulated hosts for SimBricks,
running on 26 AWS instances.

FireSim [6] and SMAPPIC [15] both offer cloud FPGA-
based emulation, yielding impressive runtime performance in
the 1-100 MHz range. However, they have multi-hour build
times, since building FPGA images is generally slower than
building simulation binaries. In addition, both were evaluated
on smaller systems than the system discussed here.

RTL can also be mapped to purpose-built emulation hard-
ware. Commercial products in this space typically have a
maximum capacity in the tens of billions of gates [16]–
[18], which is approximately the scale of the million-core
experiment described here. However, these products are not
accessible for open-source work, and often have long build
times.

Surveying related work, we believe the research described
here is the first RTL-based million-core simulation using open-
source tools. To our knowledge, this is also the first use of
AWS ECS for distributed RTL simulation.

V. CONCLUSION

In this paper, we presented an overview of the Switchboard
modular simulation framework and demonstrated its applica-
tion to a mockup of a large hardware accelerator: an array
of one million PicoRV32 CPUs. This system was simulated
by distributing copies of a small unit cell simulator across
AWS ECS Tasks and connecting these simulators together with
Switchboard. Including build time, a full-system simulation of
a distributed matrix multiplication took less than 15 min. We
encourage the open source community to leverage Switch-
board’s agility and scalability to accelerate large hardware
systems research.

REFERENCES

[1] NVIDIA. (2024) NVIDIA Blackwell Platform
Arrives to Power a New Era of Computing.
[Online]. Available: https://nvidianews.nvidia.com/news/
nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing?
ncid=no-ncid

[2] Cerebras. (2024) The future of AI is Wafer-Scale. [Online]. Available:
https://cerebras.ai/product-chip/

[3] Wikipedia. (2024) Tesla Dojo. [Online]. Available: https://en.wikipedia.
org/wiki/Tesla Dojo

[4] H. Wang and S. Beamer, “RepCut: Superlinear Parallel RTL Simulation
with Replication-Aided Partitioning,” in Proc. 28th ASPLOS, Volume 3,
ser. ASPLOS 2023. New York, NY, USA: Association for Computing
Machinery, 2023, p. 572–585.

[5] M. Emami et al., “Parendi: Thousand-Way Parallel RTL Simulation,”
CoRR, vol. abs/2403.04714, 2024. [Online]. Available: https://doi.org/
10.48550/arXiv.2403.04714

[6] S. Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-
Out System Simulation in the Public Cloud,” in 45th ISCA, 2018, pp.
29–42.

[7] L. Carloni et al., “A Methodology for Correct-by-Construction Latency
Insensitive Design,” in 1999 ICCAD Digest, 1999, pp. 309–315.

[8] S. Herbst et al., “Switchboard: An Open-Source Framework for
Modular Simulation of Large Hardware Systems,” 2024. [Online].
Available: https://arxiv.org/abs/2407.20537

[9] ——. (2023) switchboard. [Online]. Avail-
able: https://github.com/zeroasiccorp/switchboard/commit/
a28374ad751f96dcce0b381459f139ef09680442

[10] C. Wolf et al. (2024) PicoRV32. [On-
line]. Available: https://github.com/YosysHQ/picorv32/commit/
87c89acc18994c8cf9a2311e871818e87d304568

[11] L. T. Clark et al., “ASAP7: A 7-nm finFET predictive process design
kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[12] G. López-Paradı́s et al., “Fast Behavioural RTL Simulation of 10B
Transistor SoC Designs with Metro-Mpi,” in 2023 DATE Conf., 2023,
pp. 1–6.

[13] M. Orenes-Vera et al., “MuchiSim: A Simulation Framework for Design
Exploration of Multi-Chip Manycore Systems,” in 2024 ISPASS, 2024.

[14] H. Li et al., “SimBricks: End-to-End Network System Evaluation with
Modular Simulation,” in Proc. SIGCOMM 2022, ser. SIGCOMM ’22.
New York, NY, USA: ACM, 2022, pp. 380–396.

[15] G. Chirkov and D. Wentzlaff, “SMAPPIC: Scalable Multi-FPGA Archi-
tecture Prototype Platform in the Cloud,” in Proc. 28th ASPLOS, Vol. 2,
ser. ASPLOS 2023. New York, NY, USA: ACM, 2023, p. 733–746.

[16] Mentor Graphics. (2024) Veloce Strato CS. [Online]. Available:
https://eda.sw.siemens.com/en-US/ic/veloce/strato-hardware/

[17] Synopsys. (2023) Synopsys ZeBu Server 5. [On-
line]. Available: https://www.synopsys.com/content/dam/synopsys/
verification/technical-papers/zebu-server5-spec-mar2023.pdf

[18] Cadence. (2024) Cadence Palladium. [Online]. Available: https:
//www.cadence.com/en US/home/tools/system-design-and-verification/
emulation-and-prototyping/palladium.html

