
A Fast, Accurate, and Open-Source
Simulation Tool for High-Level Synthesis

Rishov Sarkar, Cong (Callie) Hao
School of Electrical and Computer Engineering, Georgia Institute of Technology

rishov.sarkar@gatech.edu, callie.hao@ece.gatech.edu

Abstract—High-level synthesis (HLS) tools enable developers
to write software code in C, C++, or SystemC and generate
hardware RTL code in Verilog or VHDL, making it easier to
develop complex hardware designs. However, to evaluate these
designs, developers typically still rely on slow RTL simulators
that can take hours to provide feedback, especially for complex
designs. We introduce LightningSim, an open-source simulation
tool for HLS designs that produces “RTL-like” latency estimates
with “C-like” speed. LightningSim directly operates on the
LLVM intermediate representation (IR) code of an HLS
design and accurately simulates a hardware design’s dynamic
behavior. First, it traces LLVM IR execution to capture the
run-time information; second, it maps the static HLS scheduling
information to the trace to simulate the dynamic behavior; third,
it calculates stalls and deadlocks from inter-function interactions
to get precise cycle counts. Evaluated on 33 benchmarks,
LightningSim produces 99.9%-accurate timing estimates up to
146× faster than RTL simulation. Our code and benchmark
scripts, written in a combination of Python and Rust, are
open-source on GitHub, licensed under the AGPL-3.0 license,
and were awarded badges for artifact reproducibility.

I. INTRODUCTION

High-Level Synthesis (HLS) tools aid hardware designers
by transforming software code to RTL. However, the latency
estimation provided by HLS tools is usually far from accurate
due to the lack of run-time information such as loop counts,
branches, and stalls [1], [3], [9], [10]. To get cycle-accurate
timing and to check for design issues such as deadlocks, full-
blown RTL simulation is needed, which can take hours to days
for complex designs. How to get accurate latency information
as fast as possible without running RTL simulation is essential
to agile hardware development and is of great interest.

To address this challenge, we notice that, HLS tools first
compile source code to LLVM [5] intermediate representation
(IR) operations and precisely schedule them within functions
and loops, which can already provide abundant (yet partial)
latency information. Latency variability can be attributed to
the dynamic nature of the design, including factors such as
loop iteration counts, branch conditions, and stalls in FIFOs
and AXI interfaces. Fortunately, such dynamic behaviors can
be simulated through instrumentation of the C/C++ code
only without invoking RTL simulation. We can precisely infer
the start cycle and cycle count of every LLVM IR instruction
from an IR execution trace to compute the accurate latency
of the entire program.

Motivated by the need for faster simulation, we propose
LightningSim [7], [8], the first trace-based simulator based

IR Trace Generation
(A) Make LLVM IR executable

IR Trace Analysis
(C) Trace parsing

Non-pipelined non-dataflow basic blocks
Dataflow basic blocks

(D) Resolving dynamic schedule

(F) Modeling AXI interfaces

(E) Calculating stalls

Execute modified IR and dump a trace
(B) Make LLVM IR traceable 

LightningSim⚡

❶

❷

LLVM IR
bitcode

Static
scheduling
information

Re-compute stalls
without re-simulating
(unlike current HLS
or simulation tools)

Change
FIFO depth

HLS Synthesis

Dumped Trace
Decoupled

two
stages

Fig. 1. An overview of LightningSim’s decoupled two-stage simulation
flow: IR trace generation and trace analysis.

on Vitis HLS. It can provide accurate clock cycle counts for
the entire program similar (99.9%) to RTL simulation as soon
as HLS finishes its front-end compilation and scheduling,
even before RTL code generation.

In addition to being able to start early, the most significant
advantage of LightningSim is a novel decoupled two-stage
simulation: 1 IR trace generation and 2 IR trace analysis,
as shown in Fig. 1. First, the IR trace generation step takes
in the generated LLVM IR by HLS, enables its execution
and tracing by completing undefined functions on-the-fly,
and then executes it on CPU to collect a trace, i.e., a full
execution history of LLVM IR instructions. Second, the
trace analysis step maps the static scheduling information
extracted from HLS onto the generated dynamic trace to
calculate the resulting latency. This step captures run-time
and complex behaviors of the program, including pipelined
loops, dataflow, FIFO/AXI stalls, branches, etc. Decoupling
the trace generation and analysis can enable incremental
simulation: if the hardware configuration, such as FIFO depth,
is changed, it is only necessary to rerun trace analysis, rather
than rerunning the entire HLS synthesis and trace generation.
This is a unique advantage compared to existing HLS tools
and previous simulators: if the simulation is based on the
generated RTL, once the FIFO depth changes, then the entire
RTL code needs to be re-generated and re-simulated.

We highlight our contributions and advantages over existing
approaches as follows:

mailto:rishov.sarkar@gatech.edu
mailto:callie.hao@ece.gatech.edu


• “C-like” simulation speed with “RTL-like” accuracy.
LightningSim applies lightweight instrumentation to
sequential LLVM code, which retains nearly the same
performance as simply compiling and running the C/C++
program on a CPU. Moreover, LightningSim achieves
almost the same cycle count as RTL simulation obtains.
With 33 benchmarks, including state-of-the-art machine
learning accelerators, LightningSim obtains 99.9%
accuracy in clock cycles compared to RTL simulation;
the speedup is usually one to two orders of magnitude,
up to 146×.

• Rigorous dynamic behavior modeling. LightningSim
faithfully mimics dynamic program behaviors, including
FIFO stalls, deadlocks, pipelined loops, dataflow,
branches, etc., using the static scheduling information
provided by HLS and the dynamic IR execution trace.

• Decoupled trace-based analysis for incremental
simulation. Thanks to decoupled trace generation and
analysis, LightningSim can quickly and flexibly change
simulated hardware parameters ex post facto, after a sin-
gle simulation run. For instance, to our best knowledge,
LightningSim is the first tool that can simulate any FIFO
depth from just one simulation, enabling LightningSim
to modify or suggest optimal FIFO depths and detect
deadlock without rerunning HLS synthesis.

• Parallelizable with HLS synthesis. To our best
knowledge, LightningSim is the first tool that can start
simulation before the completion of HLS synthesis or
even scheduling. The IR trace generation step can start
as soon as the front-end LLVM compilation finishes,
which happens before HLS scheduling, binding, and
RTL generation.

• Timing model for external memory accesses. FPGA
designs typically use AXI protocol to read and write from
external memory, the DRAM. LightningSim includes a
highly accurate timing model for such accesses.

• Open-source with push-button ease of use.
LightningSim is publicly available on GitHub1 and,
following installation, one can easily apply it to existing
Vitis HLS projects using a single Python command
without rerunning HLS synthesis.

II. BACKGROUND

We identify two prior works focusing on HLS simulation
acceleration: FastSim [1] and FLASH [3]. FastSim translates
the generated Verilog code back to equivalent C++ and
optimizes the constructs that frequently appear such as finite
state machines (FSMs) for faster simulation. FLASH uses
the scheduling information extracted from HLS synthesis
together with the input C/C++ code to generate a FIFO
communication cycle-accurate (FCCA) C model.

Both of these approaches rely on the information after
HLS scheduling or RTL generation. By contrast, we identify
an opportunity for a novel approach: map HLS scheduling

1https://github.com/sharc-lab/LightningSim

information directly onto LLVM IR execution, which
allows simulation to start as soon as the IR is generated and
enables our decoupled trace-based approach.

III. OVERVIEW AND CHALLENGES

LightningSim’s two decoupled stages are IR trace
generation and IR trace analysis. First, in trace generation,
LightningSim compiles the LLVM IR to an executable binary
and runs it to generate an execution trace. Second, in trace
analysis, LightningSim analyzes the trace and hierarchically
calculates the latency of the entire program from instructions
to basic blocks and to functions. We identify the following
major challenges during the two stages:

1) Enabling execution of LLVM IR. While the LLVM
project provides the backend infrastructure capable
of compiling the IR code to native machine code for
popular CPU architectures [5], the IR code generated by
HLS is intended only for internal use and thus cannot
be directly compiled into a software executable due
to undefined or dummy functions. We must define or
redefine such functions on-the-fly to enable execution.

2) Enabling tracing of LLVM IR. The scheduling
information provided by the HLS tool is given in terms
of the hardware start and end stages (roughly analogous
to clock cycles) of each LLVM IR instruction within a
function (corresponding to a hardware module). In order
to accurately count clock cycles, the execution order of
the LLVM IR instructions must be tracked, as well as
any other events that can affect timing and stalls such
as reads from and writes to FIFOs and AXI interfaces.

3) Dynamic schedule resolution. HLS only provides
static scheduling for each module but does not account
for dynamic program behavior. During RTL generation,
each stage in the static schedule is mapped to one
state of a finite state machine (FSM), which does not
execute sequentially: the FSM can skip states because
of branches and loops with multiple iterations. This
is further complicated by pipelined loops, where the
execution of stages across loop iterations can overlap.
Therefore, we must recalculate the dynamic scheduling
information based on the static schedule and the
instruction execution trace.

4) Stall calculation. Each stage of the dynamic schedule
corresponds to one clock cycle except in the case of
stalls. Stalls can occur on attempts to read from an
empty FIFO, write to a full FIFO, or read from an
AXI interface that is not ready, etc. Therefore, we must
efficiently account for cross-module interactions caused
by each FIFO and AXI interface such that we can
quickly calculate the total clock cycle count including
stall cycles.

5) AXI modeling. Stall calculation is particularly challeng-
ing for external memory accesses through AXI inter-
faces, which have complex internal behavior, making it
difficult to accurately predict the timing of AXI transac-
tions; FLASH [3] does not have a timing model for this.



Trace of LLVM basic blocks

(b) Dynamic schedule

Instruction
Static Stage

fifo_read
br

subcall1
br

subcall2

mul

br

1 2 3 4 5

br

BB1

BB2

BB3

BB4

B
as

ic
 B

lo
ck

Static Stage

1 2 3 4 5

add

6 7 8
Dynamic Stage

1 2 3 4 1 5 3 4

BB1 BB2 BB4 BB1 BB3 BB4
Time

Time

(a) Static schedule (generated by HLS)

BB1
executes

twice

BB4
executes

twice

(c) Final computed cycle counts

1 2 3 4 5 6 7 8
Dynamic Stage

1 2 3 4 5 6 7 8 9 10
Clock Cycles

Time

Stall
because
of empty

FIFO read

Stall because
subcall2 takes 3

cycles instead of 2

(F) AXI 

Modeling

❷

(E) Stall 

Calculation 

(e.g. FIFO)

❷
(D) Schedule 

Resolution

❷

Fig. 2. An example of LightningSim’s trace analysis process for a single function call. Using the trace of LLVM basic blocks generated during simulation
(§IV-B) and static schedule data from HLS synthesis, schedule resolution (§IV-D) resolves a dynamic schedule where dynamic stages increase monotonically
over time. Then, stall calculation (§IV-E) accounts for any stall cycles.

We must design a model for AXI transactions that is as
close as possible to the HLS-generated RTL design.

In the next section, we discuss how LightningSim addresses
these challenges.

IV. LIGHTNINGSIM TECHNIQUES

A. Making the IR Executable

HLS front-end compilation produces LLVM IR code to
be used for scheduling, binding, and RTL generation. Light-
ningSim extracts the IR code and uses the LLVM project’s
built-in code generation backend to compile the IR code to
native machine code for the host CPU architecture, such as
x86 and x86-64 [5]. As the HLS-generated LLVM IR code
is not intended for CPU machine code generation, there are
undefined functions and missing intrinsics that LightningSim
defines or re-implements on-the-fly from pre-written templates.

B. Making the IR Traceable

To create an accurate representation of hardware timing,
LightningSim needs to understand the specific LLVM IR
instructions that were executed and in what order during
CPU simulation. Instructions are organized in basic blocks,
which are groups of instructions with a single entry point
and a single exit point, which can be traced to determine all
executed instructions [2].

LightningSim employs a custom LLVM pass that iterates
through all basic blocks and adds a call to a tracing function
to identify the execution of these blocks.

C. Trace Parsing

The executed and generated trace data is “flat,” i.e., dumped
sequentially in an unstructured form. LightningSim transforms
the flat trace into a hierarchical structure of function calls,
each with FIFO, AXI, and nested sub-call instructions.

D. Resolving the Dynamic Schedule

Dynamic schedule resolution uses the static schedule gen-
erated by HLS and the parsed trace to determine the dynamic
schedule for each instruction and function, as shown in Fig. 2.

Each instance of a basic block (BB) in the trace can
be linked to a set of “static stages” in the HLS-generated
schedule and a set of “dynamic stages” based on simulation
behavior. LightningSim handles three cases separately—non-
pipelined non-dataflow BBs, pipelined BBs, and dataflow
BBs—following specific rules to replicate the hardware
behavior for each case.

E. Calculating Stalls

The resulting dynamic schedule consists of dynamic stages,
which are usually one cycle each. However, two issues
remain. First, some stages may take more than one cycle to
complete due to stalls, for instance, if a FIFO is not ready
by the time the HLS design expects it to be. Second, within
any function, stalls may delay the start of any sub-calls, such
that the timing of a callee depends on its caller.

To solve these issues globally throughout the simulation,
LightningSim compiles all modules’ dynamic schedules into
a directed acyclic graph (DAG) where nodes represent the
dynamic stages within each module and edges represent
cross-module “happens-before” constraints, whose lengths
are numbers of clock cycles. For instance, we add edges to
enforce a minimum delay between writes in the producer
function and reads in the consumer function.

We can then quickly calculate the total number of clock
cycles as the length of the longest path in the DAG, which
fully accounts for all stalls thanks to edges that increase the
path length. Furthermore, for incremental simulation with
changed FIFO depths, we can rapidly recalculate the longest
path with new edge lengths without having to rerun any other
part of the simulation.

F. Modeling AXI Interfaces

The HLS-generated design incorporates its own AXI
controllers for each AXI interface, which mediates requests
and responses on all AXI buses between the HLS design
and the rest of the system. These controllers are used, for
example, to break long AXI bursts generated internally from
the HLS design into multiple specification-compliant AXI



TABLE I
SPEED AND ACCURACY METRICS OF LIGHTNINGSIM ON VARIOUS BENCHMARKS.

Features Time (s) Cycles
Benchmark C P D F A Cosim LS LS Inc Cosim LS HLS

Fixed-point square root [11] ✗ ✓ ✗ ✗ ✗ 27.25 4.97 (5.5×) 0.00 ms 30 30 (±0.0%) 32 (+6.7%)
FIR filter [11] ✗ ✓ ✗ ✗ ✗ 20.12 2.43 (8.3×) 0.00 ms 172 172 (±0.0%) 174 (+1.2%)
Fixed-point window conv [11] ✗ ✓ ✗ ✗ ✗ 28.30 3.69 (7.7×) 0.00 ms 35 35 (±0.0%) 37 (+5.7%)
Floating point conv [11] ✗ ✓ ✗ ✗ ✗ 49.78 2.42 (20.6×) 0.00 ms 35 35 (±0.0%) 37 (+5.7%)
Arbitrary precision ALU [11] ✗ ✗ ✗ ✗ ✗ 24.17 2.12 (11.4×) 0.00 ms 36 36 (±0.0%) 36 (±0.0%)
Parallel loops [11] ✓ ✓ ✗ ✗ ✗ 26.81 2.34 (11.4×) 0.00 ms 32 32 (±0.0%) 34 (+6.2%)
Imperfect loops [11] ✓ ✓ ✗ ✗ ✗ 25.80 2.24 (11.5×) 0.00 ms 34 34 (±0.0%) 36 (+5.9%)
Loop with max bound [11] ✗ ✓ ✗ ✗ ✗ 24.76 2.25 (11.0×) 0.00 ms 31 31 (±0.0%) 33 (+6.5%)
Perfect nested loops [11] ✗ ✓ ✗ ✗ ✗ 24.76 2.27 (10.9×) 0.00 ms 406 406 (±0.0%) 408 (+0.5%)
Pipelined nested loops [11] ✗ ✓ ✗ ✗ ✗ 24.92 2.23 (11.2×) 0.00 ms 405 405 (±0.0%) 405 (±0.0%)
Sequential accumulators [11] ✓ ✓ ✗ ✗ ✗ 26.59 2.29 (11.6×) 0.00 ms 32 32 (±0.0%) 34 (+6.2%)
Accumulators + asserts [11] ✓ ✓ ✗ ✗ ✗ 27.13 2.30 (11.8×) 0.00 ms 33 33 (±0.0%) 259 (+684.8%)
Accumulators + dataflow [11] ✓ ✓ ✓ ✗ ✗ 27.26 2.29 (11.9×) 0.00 ms 31 31 (±0.0%) 33 (+6.5%)
Static memory example [11] ✓ ✓ ✗ ✗ ✗ 33.23 2.18 (15.2×) 0.00 ms 66 66 (±0.0%) 70 (+6.1%)
Pointer casting example [11] ✗ ✓ ✗ ✗ ✗ 32.55 2.15 (15.1×) 0.00 ms 408 408 (±0.0%) 410 (+0.5%)
Double pointer example [11] ✓ ✓ ✗ ✗ ✗ 31.70 2.14 (14.8×) 0.00 ms 25 25 (±0.0%) 29 (+16.0%)
AXI4 master [11] ✓ ✓ ✗ ✗ ✓ 21.06 2.19 (9.6×) 0.00 ms 178 177 (−0.6%) 176 (−1.1%)
AXIS w/o side channel [11] ✗ ✓ ✗ ✗ ✗ 19.12 2.06 (9.3×) 0.00 ms 52 51 (−1.9%) 53 (+1.9%)
Multiple array access [11] ✗ ✓ ✗ ✗ ✗ 24.32 2.18 (11.2×) 0.00 ms 252 252 (±0.0%) 254 (+0.8%)
Resolved array access [11] ✓ ✓ ✗ ✗ ✗ 24.36 2.20 (11.1×) 0.00 ms 131 131 (±0.0%) 133 (+1.5%)
URAM with ECC [11] ✓ ✓ ✗ ✗ ✗ 22.07 2.21 (10.0×) 0.00 ms 115 115 (±0.0%) 121 (+5.2%)
Fixed-point Hamming [11] ✗ ✓ ✗ ✗ ✗ 33.28 2.37 (14.1×) 0.00 ms 259 259 (±0.0%) 261 (+0.8%)
Unoptimized FFT [4] ✓ ✓ ✗ ✗ ✗ 153.53 2.78 (55.2×) 1.85 ms 261,781 261,150 (−0.2%) ?
Multi-stage FFT [4] ✓ ✓ ✓ ✗ ✗ 61.43 2.67 (23.0×) 0.00 ms 3,770 3,772 (+0.1%) ?
Huffman encoding [4] ✓ ✓ ✓ ✗ ✗ 46.89 2.63 (17.8×) 0.01 ms 10,283 10,272 (−0.1%) ?
Matrix multiplication [4] ✗ ✓ ✗ ✗ ✗ 26.33 2.61 (10.1×) 0.00 ms 1,036 1,036 (±0.0%) 1,038 (+0.2%)
Parallelized merge sort [4] ✓ ✓ ✓ ✗ ✗ 48.79 2.27 (21.5×) 0.00 ms 131 131 (±0.0%) 139 (+6.1%)
Vector add with stream [12] ✓ ✓ ✓ ✓ ✓ 27.21 4.48 (6.1×) 0.36 ms 4,261 4,261 (±0.0%) 4,242 (−0.4%)
FlowGNN GIN [6] ✓ ✓ ✓ ✓ ✓ 4219.85 28.86 (146.2×) 2.62 ms 260,359 260,337 (−0.0%) 216,007 (−17.0%)
FlowGNN GCN [6] ✓ ✓ ✓ ✓ ✓ 534.33 30.95 (17.3×) 19.67 ms 112,836 112,561 (−0.2%) 68,170 (−39.6%)
FlowGNN GAT [6] ✓ ✓ ✓ ✓ ✓ 838.24 41.63 (20.1×) 14.15 ms 17,282 17,282 (±0.0%) 16,102 (−6.8%)
FlowGNN PNA [6] ✓ ✓ ✓ ✓ ✓ 3285.45 30.50 (107.7×) 8.54 ms 344,206 344,206 (±0.0%) ?
FlowGNN DGN [6] ✓ ✓ ✓ ✓ ✓ 996.13 26.89 (37.0×) 1.80 ms 110,710 110,710 (±0.0%) 93,846 (−15.2%)

Features indicate whether benchmark has: C: sub-calls to other functions; P: pipelined loops; D: dataflow regions; F: FIFO streams; A: AXI interfaces.
Cosim: Time for C/RTL co-simulation. LS: Time for LightningSim end-to-end simulation (vs. C/RTL co-simulation).
LS Inc.: Time for LightningSim to incrementally re-calculate stalls after changing FIFO depths.
Cosim Cycles: Clock cycle counts reported by C/RTL co-simulation.
LS Cycles: Clock cycles counts reported by LightningSim (vs. C/RTL co-simulation).
HLS Cycles: Clock cycles counts reported by HLS synthesis report, when available (vs. C/RTL co-simulation).

bursts that do not cross 4 KB address boundaries. As the
AXI controllers are implemented only in the generated RTL,
LightningSim uses a detailed model to calculate the stall
cycles for AXI I/O events in a manner as close as possible to
the complex RTL-described behavior of the AXI controllers.

V. EXPERIMENTS AND RESULTS

We use 33 benchmarks to comprehensively evaluate
LightningSim’s accuracy and performance, consisting of
small sample designs [11], [12], popular HLS algorithms [4],
and complex GNN accelerators [6]. Table I shows our results.

LightningSim achieves 5.5–146.2× speedup comparing
with C/RTL cosimulation. Larger designs such as FlowGNN
models tend to achieve the largest speedups.

Furthermore, LightningSim achieves its largest speedups
in incremental stall recalculation, where the simulation is
re-executed with changed FIFO depths. This takes under 20
milliseconds in all test cases, enabling hardware designers to
evaluate deadlocks and stalls in streaming dataflow designs
with unprecedented speed.

LightningSim produces cycle count results with 99.9%
accuracy on average, in comparison to the cycle counts

produced by C/RTL cosimulation. LightningSim achieves
100% accuracy for 26 out of 33 cases. In the remaining 7
cases, two have 1.9% and 0.6% error but both are only 1
cycle off; the other five are all within 0.2% error.

VI. OPEN-SOURCE

LightningSim is developed with usability, reproducibility,
and open-source principles in mind. The code for our
simulation tool itself, written in Python and Rust, is publicly
available on GitHub and licensed under the AGPL-3.0
open-source license. We also package LightningSim as a
conda package, allowing easy installation on user systems
using a single conda command. Several usage examples are
available as part of a tutorial on our documentation site.2

Both of our publications for LightningSim [7], [8] have
been validated for reproducibility, each earning three artifact
evaluation badges certifying that our code and benchmarks
are available, evaluated, and results reproduced.

We believe that ensuring that anyone can use and reproduce
works such as LightningSim is extremely important for EDA
research, and we hope to set an example for others in the field.

2https://lightningsim-doc.readthedocs.io/en/latest/tutorial/index.html

https://lightningsim-doc.readthedocs.io/en/latest/tutorial/index.html


REFERENCES

[1] M. Abderehman, J. Patidar, J. Oza, Y. Nigam, T. A. Khader, and
C. Karfa, “FastSim: A fast simulation framework for high-level
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 5, pp. 1371–1385, May 2022.

[2] T. Ball and J. R. Larus, “Optimally profiling and tracing programs,”
ACM Transactions on Programming Languages and Systems, vol. 16,
no. 4, pp. 1319–1360, Jul. 1994.

[3] Y.-K. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast, parallel, and
accurate simulator for HLS,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 12, pp.
4828–4841, Dec. 2020.

[4] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for
FPGAs,” May 2018.

[5] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., Mar. 2004, pp.
75–86.

[6] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “FlowGNN:
A dataflow architecture for real-time workload-agnostic graph neural
network inference,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). Montreal, QC, Canada:
IEEE, Feb. 2023, pp. 1099–1112.

[7] R. Sarkar and C. Hao, “LightningSim: Fast and accurate trace-based
simulation for high-level synthesis,” in 2023 IEEE 31st Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). Marina Del Rey, CA, USA: IEEE, May 2023, pp. 1–11.

[8] R. Sarkar, R. Paul, and C. Hao, “LightningSimV2: Faster and
scalable simulation for high-level synthesis via graph compilation and
optimization,” in 2024 IEEE 32nd Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). Orlando,
FL, USA: IEEE, May 2024, pp. 104–114.

[9] A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Enabling automated
FPGA accelerator optimization using graph neural networks,” Nov. 2021.

[10] N. Wu, Y. Xie, and C. Hao, “IRONMAN: GNN-assisted design space
exploration in high-level synthesis via reinforcement learning,” in
Proceedings of the 2021 on Great Lakes Symposium on VLSI, ser.
GLSVLSI ’21. New York, NY, USA: Association for Computing
Machinery, Jun. 2021, pp. 39–44.

[11] Xilinx, “Basic examples for Vitis HLS,” GitHub, Apr. 2021.
[12] ——, “Vitis accel examples’ repository,” GitHub, Aug. 2022.


	Introduction
	Background
	Overview and Challenges
	LightningSim Techniques
	Making the IR Executable
	Making the IR Traceable
	Trace Parsing
	Resolving the Dynamic Schedule
	Calculating Stalls
	Modeling AXI Interfaces

	Experiments and Results
	Open-Source
	References

