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Abstract—This paper introduces pyngspice, a Python 

binding for ngspice that overcomes the performance limitations 

of existing solutions. Implemented as a Python C extension, 

pyngspice achieves near-native execution speeds while 

integrating seamlessly with Python’s ecosystem, including 

libraries such as NumPy and pandas. Benchmarks show 

significant improvements, with pyngspice reducing simulation 

time by approximately 50% for simple circuits compared to 

PySpice, and reducing overall training time in reinforcement 

learning applications by more than 20%, and nearly 50% 

compared to the ngspice executable method. These results 

highlight the effectiveness of the pyngspice framework for time-

sensitive simulations and its potential to bridge the gap between 

high-performance circuit simulations and modern data-driven 

workflows. 
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I. INTRODUCTION  

Circuit simulations play a pivotal role in the design and 
verification of electronic circuits. By enabling designers to 
model and analyze circuit behavior prior to physical 
fabrication, simulations help in identifying critical issues early 
in the design process, thereby reducing development costs and 
time-to-market. Among the various tools available for circuit 
simulation, SPICE (Simulation Program with Integrated 
Circuit Emphasis) simulators have been the standard 
integrated circuit simulator for decades [1]. Ngspice, an open-
source descendant of SPICE, has become particularly popular 
due to its flexibility, comprehensive feature set, and the active 
support it receives from the community. Ngspice is widely 
used in both academia and industry, facilitating a range of 
activities from educational exercises to advanced research and 
industrial design projects. 

Despite ngspice’s extensive capabilities and widespread 
adoption, there have been continuing demands on integrating 
it with modern programming environments such as Python. 
Python has become the de facto language for data analysis, 
machine learning, and automation, owing to its simplicity, 
readability, and the vast ecosystem of libraries it offers. For 
electronic design automation (EDA), where tasks often 
involve complex data processing, iterative simulations, and 
optimization routines, Python’s strengths are particularly 
valuable for enhancing productivity. 

There are two primary approaches to integrating ngspice 
with Python: the shared library method and the executable file 
method. The shared library method involves interfacing 
Python directly with ngspice’s shared library using 
mechanisms such as Python’s ctypes or CFFI (C Foreign 
Function Interface) libraries. This approach allows Python 

code to call ngspice functions directly, offering fine-grained 
control over simulations and enabling seamless integration 
with Python’s data processing libraries. However, this method 
introduces overhead due to the constant switching between 
Python and C, which can lead to performance bottlenecks, 
especially in applications requiring rapid or repeated 
simulations. 

On the other hand, the executable file method involves 
invoking the ngspice executable from within Python scripts. 
This approach typically uses Python’s subprocess module to 
run ngspice as an external process, with input and output 
handled via files or standard input/output streams. While this 
method is simpler to implement and avoids some of the 
performance issues associated with shared libraries, it suffers 
from its own drawbacks. The overhead of process creation and 
stream I/O can be substantial, and the need to parse and 
interpret ngspice’s output in Python further complicates the 
workflow. Additionally, the executable file method lacks the 
tight integration with Python’s ecosystem, making it less 
suitable for complex data processing or automation tasks. 

Both of these approaches have been implemented in 
various Python libraries to integrate ngspice. PySpice [2] and 
ngspicepy [3] use the shared library method, which offer a 
more Pythonic interface and better integration with Python’s 
data handling capabilities, but at the cost of increased 
overhead and slower performance in simulation-heavy tasks. 
Conversely, spicelib [4] relies on the executable file method 
and provides a more straightforward implementation with 
lower setup complexity, but often at the expense of flexibility 
and execution speed. 

Given these limitations, there is a clear demand for a more 
efficient and integrated solution to using ngspice within 
Python. This paper introduces pyngspice, a Python binding for 
ngspice that is designed to address the performance issues 
associated with existing solutions. Pyngspice is implemented 
as a Python C extension, which allows it to interface directly 
with ngspice at a low level, thereby minimizing overhead and 
achieving near-native execution speeds. This approach not 
only preserves the full functionality of ngspice but also allows 
users to leverage Python’s extensive ecosystem without 
sacrificing performance.  

The objective of this research is to demonstrate that 
pyngspice provides a significant performance improvement 
over existing tools, making it a more suitable choice for time-
sensitive simulation tasks. The following sections of this paper 
will detail the design and implementation of pyngspice, 
provide benchmark comparisons with PySpice and ngspice 
executable method, and explore its application in 
reinforcement learning for circuit optimization. By achieving 
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a seamless integration of ngspice with Python, pyngspice aims 
to bridge the gap between high-performance circuit simulation 
and modern data-driven design workflows. 

 

II. PYNGSPICE 

A. Design Principles 

The development of pyngspice is anchored in three key 
design principles: performance, compatibility, and 
extensibility. These principles guide the architecture of the 
tool to ensure it meets the demands of modern circuit 
simulation tasks, both in terms of speed and integration with 
existing Python-based workflows. 

• Performance: Pyngspice is implemented as a Python C 
extension, allowing it to directly interface with the 
ngspice shared library without the overhead introduced 
by intermediate libraries like ctypes. This direct 
interaction enables pyngspice to achieve near-native 
execution speeds, which is critical for both small-scale 
simulations. Additionally, pyngspice employs several 
low-level optimizations, including the inlining of 
frequently called functions and minimizing data 
copying between Python and C. These optimizations 
enhance its performance, reducing latency and making 
it ideal for computationally intensive tasks. 

• Compatibility: Pyngspice is designed to function 
seamlessly across multiple operating systems, 
including Linux, macOS, and Windows. It 
automatically detects and links the appropriate ngspice 
shared libraries and code models for each environment, 
ensuring smooth installation and operation regardless 
of the user’s platform. This cross-platform 
compatibility ensures that pyngspice can be easily 
adopted by a wide range of users. 

• Extensibility: Finally, pyngspice is built with 
extensibility in mind. The tool is intended to serve as a 
drop-in replacement for PySpice, allowing users to 
transition effortlessly to pyngspice without rewriting 
their existing codebases. Furthermore, pyngspice 
integrates smoothly with popular Python libraries like 
NumPy and pandas, enabling users to leverage 
powerful data processing and analysis tools within 
their circuit simulation workflows. This makes 
pyngspice a flexible and future-proof tool, capable of 
evolving with the growing needs of electronic design 
automation (EDA) tasks. 

 

B. Integration with Existing Tools 

One of the challenges in developing pyngspice was 
ensuring that it integrates smoothly with the broader Python 
ecosystem. To this end, pyngspice includes a comprehensive 
API that mirrors the functionality of ngspice while adhering 
to Python’s design conventions. This API supports all major 
ngspice features, including loading circuits, running analyses, 
and supporting various commands. 

Additionally, pyngspice is fully compatible with PySpice, 
allowing users to retain PySpice’s functionalities while 
utilizing pyngspice for running simulations. For instance, 
users can switch from PySpice to pyngspice with just a small 
modification to the import statement, as demonstrated below: 

# from 

from PySpice.Spice.Netlist import Circuit 

# to 

from pyngspice.pyspice import Circuit 

This simple adjustment ensures that existing PySpice code 
can be used with pyngspice, allowing users to benefit from the 
performance improvements without needing to rewrite their 
simulations. 

 

C. Enhanced Data Processing 

One of the key advantages of using Python in circuit 
simulation is its powerful data processing capabilities. 
Pyngspice leverages this by providing native support for 
NumPy, allowing users to perform complex numerical 
operations on simulation data with minimal overhead. For 
example, users can apply NumPy’s vectorized operations to 
large datasets, enabling efficient filtering, transformation, and 
analysis of simulation results. 

In addition to NumPy, pyngspice also supports integration 
with pandas, which is widely used for data manipulation and 
analysis in Python. This allows users to store and manipulate 
simulation results as DataFrames, facilitating more 
sophisticated data analysis workflows. For instance, users can 
easily compare the results of multiple simulations, perform 
statistical analysis, or visualize data trends directly within 
Python. 

 

III. BENCHMARKS 

A. Methodology 

To thoroughly evaluate the performance of pyngspice, we 
conducted a series of benchmarks comparing it against both 
PySpice and the ngspice executable method in Python. The 
benchmarks measured performance at three key stages: 
initialization, execution, and getting plots. 

• The initialization phase focused on the time and 
resources needed to set up the simulation environment 
and load circuits across each library. 

• The execution phase evaluated the actual simulation 
time and resource usage for each circuit, providing 
insights into how each tool handles the computational 
load of the simulation process. 

• Finally, the getting plots stage measured the efficiency 
of retrieving simulation results, a crucial aspect for 
real-time analysis and data-driven workflows. 

Once the stage-based analysis framework was established, 
we applied it to a series of benchmark circuits. These circuits 
ranged from simple designs, like a single-stage amplifier 
(frequency response) and a level shifter (DC transfer curve), 
to a more complex circuit, C3540, derived from the ISCAS85 
benchmark suite [5]. This selection ensured that the tests 
covered a wide range of real-world use cases, from basic 
analog components to intricate digital systems. 

Each circuit was simulated under identical conditions 
using pyngspice, PySpice, and the ngspice executable. We 
measured key performance metrics, including simulation time 
and peak memory usage (consumed by the Python process), 



across the different stages. Benchmarks were conducted on a 
NHN Cloud Compute Instance  (m2.c8m16), configured with 
8 vCPUs, 16 GB of RAM, and running Ubuntu 20.04 LTS. 
All simulations were repeated 500 times to ensure statistical 
significance, with results averaged to reduce the effect of 
transient system variations. 

 

B. Performance Results 

The benchmark results in Table 1 and 2 clearly demon-
strate the performance advantages of pyngspice over PySpice. 
In simple circuits, such as a single-stage amplifier and level 
shifter, pyngspice consistently outperformed PySpice by 
reducing simulation time by approximately 50%. For more 
complex circuits, such as those based on the ISCAS85 
benchmarks, the performance gap between pyngspice and 
PySpice narrows, but pyngspice still maintains a slight edge, 
delivering marginally faster results in nearly every case. While 
the difference is less pronounced, pyngspice continues to 
show subtle yet consistent improvements in efficiency. 

Additionally, the executable method does not have a 
separate initialization stage, as initialization is integrated into 
the execution phase. As a result, the total execution time for 
the executable method is longer compared to pyngspice and 
PySpice, where initialization is a distinct phase. 

Peak memory usage was also measured to assess the 
overall resource efficiency of pyngspice. The results show that 
pyngspice has a lower memory footprint compared to 
PySpice, which can be attributed to the optimized data 
handling. 

 

C. Implications of Performance Gains 

The performance improvements achieved by pyngspice 
have significant implications for circuit design workflows. In 
scenarios where simulations need to be run frequently, such as 
during reinforcement learning or optimization tasks, the time 
savings provided by pyngspice can be substantial. For 
instance, in a setup where millions of parametric sweeps are 
required to optimize a circuit design or evaluate its robustness 
under different conditions, a 50% reduction in simulation time 
can translate to hours or even days of saved computation time. 

 

IV. APPLICATION IN REINFORCEMENT LEARNING 

A. Reinforcement Learning Integration 

Reinforcement learning (RL) has emerged as a powerful 
tool for optimizing circuit designs, particularly in situations 
where traditional design methodologies are insufficient [6, 7]. 
In an RL framework, an agent iteratively improves a circuit 
design by interacting with the simulation environment and 
receiving feedback in the form of a reward signal. This process 
often requires running thousands or even millions of 
simulations to explore the design space and converge on an 
optimal solution. 

pyngspice is ideally suited for integration into RL 
workflows due to its fast simulation capabilities and efficient 
data handling. By reducing the time required for each 
simulation, pyngspice enables RL algorithms to explore the 

TABLE I.  PERFORMANCE COMPARISON OF THE INITIALIZATION 

Library Elapsed Time Peak Memory 

Executable - - 

PySpice 49.336 1.570 

pyngspice 2.595 0.000 

TABLE II.  PERFORMANCE COMPARISON OF THE EXECUTION AND GETTING PLOTS OF THE CIRCUITS 

Circuit Library 
Execution Getting Plots 

Elapsed Time Peak Memory Elapsed Time Peak Memory 

Single-stage 

Amplifier 

Executable 20.507 - 44.143 - 

PySpice 15.577 0.002 0.437 0.368 

pyngspice 8.747 0.000 0.247 0.367 

Level shifter 

Executable 6.553 - 1.552 - 

PySpice 1.748 0.004 0.197 0.004 

pyngspice 1.026 0.000 0.039 0.001 

C3540 

Executable 111303.473 - 76.767 - 

PySpice 106813.294 0.639 854.712 267.947 

pyngspice 106606.488 0.000 91.860 8.965 

a. Elapsed Time (ms) and Peak Memory Usage (MB) 

 



design space more quickly, leading to faster convergence on 
optimal designs. 

 

B. Case Study: AutoCkt 

To demonstrate the practical benefits of pyngspice in an 
RL context, we conducted a case study using AutoCkt [6], a 
tool that automates the design of analog circuits through RL. 
In this study, we compared the performance of pyngspice, 
PySpice, and the native ngspice executable in optimizing a 
common-source amplifier circuit. The experiment was 
configured using Ray, with 200 iterations and 6 workers for 
parallel processing. 

The RL algorithm was tasked with optimizing the 
amplifier’s gain and bandwidth by adjusting component 
values such as transconductances and capacitances. The 
optimization process involved running the circuit simulation 
thousands of times to evaluate different design configurations. 

As expected from the benchmark results discussed in the 
previous section, pyngspice still outperformed the others 
during the reinforcement learning process, though the 
performance gap was smaller. As shown in Table 3, compared 
to PySpice, pyngspice reduced the overall training time by 
more than 20%, and by nearly 50% when compared to the 
executable method, allowing the RL algorithm to converge on 
an optimal solution more quickly. The reduced performance 
gain can be attributed to the additional computational 
overhead inherent in the RL environment. Factors such as the 
processing time of the RL algorithm itself, the communication 
between the RL agent and the simulator, and other non-
simulation-related computations consume a significant 
portion of the total runtime, thereby lessening the relative 

impact of the simulation speed improvements provided by 
pyngspice. 

This case study highlights the potential of pyngspice to 
accelerate RL-driven circuit design, making it a valuable tool 
for both researchers and practitioners in the field of electronic 
design automation. 

 

V. CONCLUSION 

This paper introduces pyngspice, a high-performance 
Python binding for ngspice, designed to overcome the 
limitations of existing Python-SPICE integration tools. 
pyngspice achieves significant performance improvements 
over PySpice while maintaining compatibility with existing 
workflows. The benchmarks and case studies demonstrate 
pyngspice’s ability to accelerate circuit simulation and 
optimization tasks, particularly in reinforcement learning 
applications. 
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TABLE III.  PERFORMANCE COMPARISON OF THE RL TRAINING 

Library Elapsed Time (sec) 

Executable 1947.69 

PySpice 1265.54 

pyngspice 983.46 
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