

pyngspice: A High-performance Python Binding

for Ngspice

Jihyeon Park

Department of Electronic Engineering

Hanyang University

Seoul, Korea

falon18@hanyang.ac.kr

Mintae Kim

Department of Electronic Engineering

Hanyang University

Seoul, Korea

alsxo326@hanyang.ac.kr

Jaeduk Han

Department of Electronic Engineering

Hanyang University

Seoul, Korea

jdhan@hanyang.ac.kr

Abstract—This paper introduces pyngspice, a Python

binding for ngspice that overcomes the performance limitations

of existing solutions. Implemented as a Python C extension,

pyngspice achieves near-native execution speeds while

integrating seamlessly with Python’s ecosystem, including

libraries such as NumPy and pandas. Benchmarks show

significant improvements, with pyngspice reducing simulation

time by approximately 50% for simple circuits compared to

PySpice, and reducing overall training time in reinforcement

learning applications by more than 20%, and nearly 50%

compared to the ngspice executable method. These results

highlight the effectiveness of the pyngspice framework for time-

sensitive simulations and its potential to bridge the gap between

high-performance circuit simulations and modern data-driven

workflows.

Keywords—SPICE, circuit simulation, ngspice, pyngspice,

Python, reinforcement learning

I. INTRODUCTION

Circuit simulations play a pivotal role in the design and
verification of electronic circuits. By enabling designers to
model and analyze circuit behavior prior to physical
fabrication, simulations help in identifying critical issues early
in the design process, thereby reducing development costs and
time-to-market. Among the various tools available for circuit
simulation, SPICE (Simulation Program with Integrated
Circuit Emphasis) simulators have been the standard
integrated circuit simulator for decades [1]. Ngspice, an open-
source descendant of SPICE, has become particularly popular
due to its flexibility, comprehensive feature set, and the active
support it receives from the community. Ngspice is widely
used in both academia and industry, facilitating a range of
activities from educational exercises to advanced research and
industrial design projects.

Despite ngspice’s extensive capabilities and widespread
adoption, there have been continuing demands on integrating
it with modern programming environments such as Python.
Python has become the de facto language for data analysis,
machine learning, and automation, owing to its simplicity,
readability, and the vast ecosystem of libraries it offers. For
electronic design automation (EDA), where tasks often
involve complex data processing, iterative simulations, and
optimization routines, Python’s strengths are particularly
valuable for enhancing productivity.

There are two primary approaches to integrating ngspice
with Python: the shared library method and the executable file
method. The shared library method involves interfacing
Python directly with ngspice’s shared library using
mechanisms such as Python’s ctypes or CFFI (C Foreign
Function Interface) libraries. This approach allows Python

code to call ngspice functions directly, offering fine-grained
control over simulations and enabling seamless integration
with Python’s data processing libraries. However, this method
introduces overhead due to the constant switching between
Python and C, which can lead to performance bottlenecks,
especially in applications requiring rapid or repeated
simulations.

On the other hand, the executable file method involves
invoking the ngspice executable from within Python scripts.
This approach typically uses Python’s subprocess module to
run ngspice as an external process, with input and output
handled via files or standard input/output streams. While this
method is simpler to implement and avoids some of the
performance issues associated with shared libraries, it suffers
from its own drawbacks. The overhead of process creation and
stream I/O can be substantial, and the need to parse and
interpret ngspice’s output in Python further complicates the
workflow. Additionally, the executable file method lacks the
tight integration with Python’s ecosystem, making it less
suitable for complex data processing or automation tasks.

Both of these approaches have been implemented in
various Python libraries to integrate ngspice. PySpice [2] and
ngspicepy [3] use the shared library method, which offer a
more Pythonic interface and better integration with Python’s
data handling capabilities, but at the cost of increased
overhead and slower performance in simulation-heavy tasks.
Conversely, spicelib [4] relies on the executable file method
and provides a more straightforward implementation with
lower setup complexity, but often at the expense of flexibility
and execution speed.

Given these limitations, there is a clear demand for a more
efficient and integrated solution to using ngspice within
Python. This paper introduces pyngspice, a Python binding for
ngspice that is designed to address the performance issues
associated with existing solutions. Pyngspice is implemented
as a Python C extension, which allows it to interface directly
with ngspice at a low level, thereby minimizing overhead and
achieving near-native execution speeds. This approach not
only preserves the full functionality of ngspice but also allows
users to leverage Python’s extensive ecosystem without
sacrificing performance.

The objective of this research is to demonstrate that
pyngspice provides a significant performance improvement
over existing tools, making it a more suitable choice for time-
sensitive simulation tasks. The following sections of this paper
will detail the design and implementation of pyngspice,
provide benchmark comparisons with PySpice and ngspice
executable method, and explore its application in
reinforcement learning for circuit optimization. By achieving

pyngspice is available at: https://github.com/LeunPark/pyngspice

a seamless integration of ngspice with Python, pyngspice aims
to bridge the gap between high-performance circuit simulation
and modern data-driven design workflows.

II. PYNGSPICE

A. Design Principles

The development of pyngspice is anchored in three key
design principles: performance, compatibility, and
extensibility. These principles guide the architecture of the
tool to ensure it meets the demands of modern circuit
simulation tasks, both in terms of speed and integration with
existing Python-based workflows.

• Performance: Pyngspice is implemented as a Python C
extension, allowing it to directly interface with the
ngspice shared library without the overhead introduced
by intermediate libraries like ctypes. This direct
interaction enables pyngspice to achieve near-native
execution speeds, which is critical for both small-scale
simulations. Additionally, pyngspice employs several
low-level optimizations, including the inlining of
frequently called functions and minimizing data
copying between Python and C. These optimizations
enhance its performance, reducing latency and making
it ideal for computationally intensive tasks.

• Compatibility: Pyngspice is designed to function
seamlessly across multiple operating systems,
including Linux, macOS, and Windows. It
automatically detects and links the appropriate ngspice
shared libraries and code models for each environment,
ensuring smooth installation and operation regardless
of the user’s platform. This cross-platform
compatibility ensures that pyngspice can be easily
adopted by a wide range of users.

• Extensibility: Finally, pyngspice is built with
extensibility in mind. The tool is intended to serve as a
drop-in replacement for PySpice, allowing users to
transition effortlessly to pyngspice without rewriting
their existing codebases. Furthermore, pyngspice
integrates smoothly with popular Python libraries like
NumPy and pandas, enabling users to leverage
powerful data processing and analysis tools within
their circuit simulation workflows. This makes
pyngspice a flexible and future-proof tool, capable of
evolving with the growing needs of electronic design
automation (EDA) tasks.

B. Integration with Existing Tools

One of the challenges in developing pyngspice was
ensuring that it integrates smoothly with the broader Python
ecosystem. To this end, pyngspice includes a comprehensive
API that mirrors the functionality of ngspice while adhering
to Python’s design conventions. This API supports all major
ngspice features, including loading circuits, running analyses,
and supporting various commands.

Additionally, pyngspice is fully compatible with PySpice,
allowing users to retain PySpice’s functionalities while
utilizing pyngspice for running simulations. For instance,
users can switch from PySpice to pyngspice with just a small
modification to the import statement, as demonstrated below:

from

from PySpice.Spice.Netlist import Circuit

to

from pyngspice.pyspice import Circuit

This simple adjustment ensures that existing PySpice code
can be used with pyngspice, allowing users to benefit from the
performance improvements without needing to rewrite their
simulations.

C. Enhanced Data Processing

One of the key advantages of using Python in circuit
simulation is its powerful data processing capabilities.
Pyngspice leverages this by providing native support for
NumPy, allowing users to perform complex numerical
operations on simulation data with minimal overhead. For
example, users can apply NumPy’s vectorized operations to
large datasets, enabling efficient filtering, transformation, and
analysis of simulation results.

In addition to NumPy, pyngspice also supports integration
with pandas, which is widely used for data manipulation and
analysis in Python. This allows users to store and manipulate
simulation results as DataFrames, facilitating more
sophisticated data analysis workflows. For instance, users can
easily compare the results of multiple simulations, perform
statistical analysis, or visualize data trends directly within
Python.

III. BENCHMARKS

A. Methodology

To thoroughly evaluate the performance of pyngspice, we
conducted a series of benchmarks comparing it against both
PySpice and the ngspice executable method in Python. The
benchmarks measured performance at three key stages:
initialization, execution, and getting plots.

• The initialization phase focused on the time and
resources needed to set up the simulation environment
and load circuits across each library.

• The execution phase evaluated the actual simulation
time and resource usage for each circuit, providing
insights into how each tool handles the computational
load of the simulation process.

• Finally, the getting plots stage measured the efficiency
of retrieving simulation results, a crucial aspect for
real-time analysis and data-driven workflows.

Once the stage-based analysis framework was established,
we applied it to a series of benchmark circuits. These circuits
ranged from simple designs, like a single-stage amplifier
(frequency response) and a level shifter (DC transfer curve),
to a more complex circuit, C3540, derived from the ISCAS85
benchmark suite [5]. This selection ensured that the tests
covered a wide range of real-world use cases, from basic
analog components to intricate digital systems.

Each circuit was simulated under identical conditions
using pyngspice, PySpice, and the ngspice executable. We
measured key performance metrics, including simulation time
and peak memory usage (consumed by the Python process),

across the different stages. Benchmarks were conducted on a
NHN Cloud Compute Instance (m2.c8m16), configured with
8 vCPUs, 16 GB of RAM, and running Ubuntu 20.04 LTS.
All simulations were repeated 500 times to ensure statistical
significance, with results averaged to reduce the effect of
transient system variations.

B. Performance Results

The benchmark results in Table 1 and 2 clearly demon-
strate the performance advantages of pyngspice over PySpice.
In simple circuits, such as a single-stage amplifier and level
shifter, pyngspice consistently outperformed PySpice by
reducing simulation time by approximately 50%. For more
complex circuits, such as those based on the ISCAS85
benchmarks, the performance gap between pyngspice and
PySpice narrows, but pyngspice still maintains a slight edge,
delivering marginally faster results in nearly every case. While
the difference is less pronounced, pyngspice continues to
show subtle yet consistent improvements in efficiency.

Additionally, the executable method does not have a
separate initialization stage, as initialization is integrated into
the execution phase. As a result, the total execution time for
the executable method is longer compared to pyngspice and
PySpice, where initialization is a distinct phase.

Peak memory usage was also measured to assess the
overall resource efficiency of pyngspice. The results show that
pyngspice has a lower memory footprint compared to
PySpice, which can be attributed to the optimized data
handling.

C. Implications of Performance Gains

The performance improvements achieved by pyngspice
have significant implications for circuit design workflows. In
scenarios where simulations need to be run frequently, such as
during reinforcement learning or optimization tasks, the time
savings provided by pyngspice can be substantial. For
instance, in a setup where millions of parametric sweeps are
required to optimize a circuit design or evaluate its robustness
under different conditions, a 50% reduction in simulation time
can translate to hours or even days of saved computation time.

IV. APPLICATION IN REINFORCEMENT LEARNING

A. Reinforcement Learning Integration

Reinforcement learning (RL) has emerged as a powerful
tool for optimizing circuit designs, particularly in situations
where traditional design methodologies are insufficient [6, 7].
In an RL framework, an agent iteratively improves a circuit
design by interacting with the simulation environment and
receiving feedback in the form of a reward signal. This process
often requires running thousands or even millions of
simulations to explore the design space and converge on an
optimal solution.

pyngspice is ideally suited for integration into RL
workflows due to its fast simulation capabilities and efficient
data handling. By reducing the time required for each
simulation, pyngspice enables RL algorithms to explore the

TABLE I. PERFORMANCE COMPARISON OF THE INITIALIZATION

Library Elapsed Time Peak Memory

Executable - -

PySpice 49.336 1.570

pyngspice 2.595 0.000

TABLE II. PERFORMANCE COMPARISON OF THE EXECUTION AND GETTING PLOTS OF THE CIRCUITS

Circuit Library
Execution Getting Plots

Elapsed Time Peak Memory Elapsed Time Peak Memory

Single-stage

Amplifier

Executable 20.507 - 44.143 -

PySpice 15.577 0.002 0.437 0.368

pyngspice 8.747 0.000 0.247 0.367

Level shifter

Executable 6.553 - 1.552 -

PySpice 1.748 0.004 0.197 0.004

pyngspice 1.026 0.000 0.039 0.001

C3540

Executable 111303.473 - 76.767 -

PySpice 106813.294 0.639 854.712 267.947

pyngspice 106606.488 0.000 91.860 8.965

a. Elapsed Time (ms) and Peak Memory Usage (MB)

design space more quickly, leading to faster convergence on
optimal designs.

B. Case Study: AutoCkt

To demonstrate the practical benefits of pyngspice in an
RL context, we conducted a case study using AutoCkt [6], a
tool that automates the design of analog circuits through RL.
In this study, we compared the performance of pyngspice,
PySpice, and the native ngspice executable in optimizing a
common-source amplifier circuit. The experiment was
configured using Ray, with 200 iterations and 6 workers for
parallel processing.

The RL algorithm was tasked with optimizing the
amplifier’s gain and bandwidth by adjusting component
values such as transconductances and capacitances. The
optimization process involved running the circuit simulation
thousands of times to evaluate different design configurations.

As expected from the benchmark results discussed in the
previous section, pyngspice still outperformed the others
during the reinforcement learning process, though the
performance gap was smaller. As shown in Table 3, compared
to PySpice, pyngspice reduced the overall training time by
more than 20%, and by nearly 50% when compared to the
executable method, allowing the RL algorithm to converge on
an optimal solution more quickly. The reduced performance
gain can be attributed to the additional computational
overhead inherent in the RL environment. Factors such as the
processing time of the RL algorithm itself, the communication
between the RL agent and the simulator, and other non-
simulation-related computations consume a significant
portion of the total runtime, thereby lessening the relative

impact of the simulation speed improvements provided by
pyngspice.

This case study highlights the potential of pyngspice to
accelerate RL-driven circuit design, making it a valuable tool
for both researchers and practitioners in the field of electronic
design automation.

V. CONCLUSION

This paper introduces pyngspice, a high-performance
Python binding for ngspice, designed to overcome the
limitations of existing Python-SPICE integration tools.
pyngspice achieves significant performance improvements
over PySpice while maintaining compatibility with existing
workflows. The benchmarks and case studies demonstrate
pyngspice’s ability to accelerate circuit simulation and
optimization tasks, particularly in reinforcement learning
applications.

REFERENCES

[1] L. W. Nagel, "The 40th Anniversary of SPICE: An IEEE Milestone
[Guest Editorial]," in IEEE Solid-State Circuits Magazine, vol. 3, no.
2, pp. 7-82, Spr. 2011,

[2] Salvaire, F., “PySpice: Simulate electronic circuits using Python and
NgSpice,” https://github.com/PySpice-org/PySpice (accessed Sep. 1,
2024).

[3] Rego, A. J., “ngspicepy: Python wrapper for ngspice,”
https://github.com/ashwith/ngspicepy (accessed Sep. 1, 2024).

[4] Brum, N. “spicelib: A Python library for electronic circuit simulation
using ngspice,” https://github.com/nunobrum/spicelib (accessed Sep. 1,
2024).

[5] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits and a targeted translator in FORTRAN,” Special
Session on ATPG and Fault Simulation, Proc. 1985 IEEE Int. Symp. on
Circuits and Systems (ISCAS’85), June 5-7, 1985.

[6] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi and B. Nikolic,
"AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs,"
2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 490-495, Mar. 2024.

[7] S. Hong et al., "Analog Circuit Design Automation via Sequential RL
Agents and Gm/ID Methodology," in IEEE Access, vol. 12, pp.
104473-104489, 2024.

TABLE III. PERFORMANCE COMPARISON OF THE RL TRAINING

Library Elapsed Time (sec)

Executable 1947.69

PySpice 1265.54

pyngspice 983.46

	I. Introduction
	II. Pyngspice
	A. Design Principles
	B. Integration with Existing Tools
	C. Enhanced Data Processing

	III. Benchmarks
	A. Methodology
	B. Performance Results
	C. Implications of Performance Gains

	IV. Application in Reinforcement Learning
	A. Reinforcement Learning Integration
	B. Case Study: AutoCkt

	V. Conclusion
	References

