Integrating Asynchronous Circuits into the Caravel
Testing Harness

Thomas Jagielski, Xiayuan Wen, Matthew Dobre, and Rajit Manohar
Computer Systems Lab, Yale University, New Haven, CT 06520
{thomas.jagielski, xiayuan.wen, matthew.dobre, rajit.manohar} @yale.edu

Abstract—The Caravel harness has been widely used to tape-
out synchronous designs in the open-source SKY130 PDK. To
use this flow for asynchronous circuit design using the open-
source ACT framework, we can treat ACT-generated layout as
an asynchronous macro. We develop an open-source toolflow
that supports this approach. This paper presents the challenges
encountered during the integration of an asynchronous macro
in the Caravel harness and the methods employed to address
these issues, including power ring generation and connection,
pin extension, and custom fill insertion. In addition, we discuss
the process of transferring data to the asynchronous circuit using
Caravel’s utilities.

I. INTRODUCTION

Asynchronous circuits, also known as clockless or self-
timed circuits, use local controllers instead of a global clock
signal for synchronization. This significant difference from
synchronous circuits introduces unique and more complex
problems in circuit design, which necessitate the development
of specialized automation tools. The ACT framework [1] is an
open-source toolchain for asynchronous logic, which translates
design described in . act files, a hierarchical design language
including communication channels, and can generate layout
files in the GDSII format.

To facilitate quick tape-out and verification of the asyn-
chronous circuits with the Skywater 130nm Open PDK, we
selected the Efabless Caravel testing harness [2]. The Efabless
Caravel chip is divided into two areas, management area and
user project area. The management area includes a RISC-V
based SoC for configuring hardware resources, managing
power supply, and monitoring and controlling modules within
the user project area where a user’s design is instantiated.

The Caravel chip is developed using OpenLane [3], an
open-source automated RTL to GDSII flow which includes
several tools such as OpenROAD [4], Yosys [5], Magic
[6], Netgen [7], SPEF-Extractor [8], KLayout [9] and
various custom scripts for exploring and optimizing the design.
Integrating an asynchronous macro into the Caravel chip
presents various challenges due to numerous difference be-
tween conventional synchronous toolflows (e.g. OpenLane)
and asynchronous toolflow (ACT), as well as the specific
organization of Caravel harness frame.

To address these issues, we develop a series of custom
scripts to post-process the output files generated by the ACT
framework, and make modifications to the configuration set-
tings of OpenLane. In this paper, we also discuss the process
of transferring data to the asynchronous circuit using Caravel’s

utilities, and highlight the considerations that users should
be aware of. The post-processing steps presented have been
used to tapeout an asynchronous MDS5 hashing accelerator
integrated in the Caravel harness.

II. CHALLENGES

To integrate a design into the Caravel harness, users
have two options: either instantiate RTL design within the
user_project_wrapper and flatten them together or first harden
the design as a macro and then incorporate this macro into the
user_project_wrapper.

The asynchronous circuit cannot be appropriately described
using RTL and synthesized by OpenLane; therefore, the
second option is our only viable choice. However, direct
integration of an asynchronous macro generated by the ACT
framework into the Caravel chip using OpenLane introduces
various challenges.

a) Fill insertion: Apart from standard cells, ACT sup-
ports custom cells due to the differing requirement for syn-
thesizing different asynchronous circuit families. To improve
area usage, ACT uses gridded cell placement supported by
the Dali placer [10], which allows the cell height and cell
width to be any integer multiple of the routing grid value.
The freedom of cell heights can potentially lead to a more
compact design, smaller wire length, and thus better delay and
energy. When using this approach for SKY 130, we discovered
that the provided fill scripts could not meet the density
requirements even after several iterations of fill insertion using
the commercial tool, Calibre. We note that this issue did
not arise in other process technologies that have been used
previously with the ACT framework, including more advanced
process nodes [11].

b) Power distribution: The top-level power distribution
network of Caravel chip has two layers of straps, one is met5
which runs horizontally and the other is met4 which runs
vertically. The ACT-generated macro also has a power mesh
running horizontally and vertically. When the macro doesn’t
have any signals or powers routed on met5, the top-level power
strap can be directly connected to the macro’s internal power
mesh using vias. However, for more complex designs with
reasonable density, routing with met5 is necessary. In such
cases, the macro needs a power ring, which is not provided
by the current ACT framework for technologies with fewer
number of metal layers like SKY130.



Once the power ring is generated, the strategy for distribut-
ing power from the ring to the macro’s internal power mesh
should account for the varying spacings between power lines
within the macro, which result from the different height of
cells. ACT includes a power detailed router for generating
these varying metal stripes, and they must be tied to the power
ring.

¢) Macro integration: For macro integration, users pro-
vide a LEF file that contains port information to the
OpenLane flow so the router can identify the connection
points. If the user exports the LEF file from Magic directly,
the port information includes all the electrically connected
points within the macro, leading to a high routing congestion
error during integration. Alternatively, the LEF file can be
exported using the ~hide option which conceals most circuit
details and retains only the port locations where the labels are
created. However, omitting information about layers near the
ports can result in DRC violations or shorts.

d) Wells: In the ACT flow, individual cells do not include
wells in the layout; instead, Dali generates a well layer
for all the cells in the design at the top level. However,
when Magic opens the design, along with cells and the well
layer, it interprets them at different levels of hierarchy. At
the individual cell level Magic interprets there is a pwell
area painted where the nwell is at the top level, resulting
numerous DRC violations. While flattening the design can
resolve this issue, it requires significant computer resources
and takes a very long time for complex designs, making it
nearly impractical for large tape-outs.

In what follows, we describe how we addressed these chal-
lenges using a combination of existing tools, newly developed
scripts, and additional functionality that was added to the
ACT framework. The open-source scripts we developed can
be found on GitHub [12].

III. DESIGN FLOW

A. HDL to LEF/DEF

Asynchronous circuits can be developed using the ACT
framework, as illustrated in the blue background of Fig. 1.
More specifically, they can be described at a high level using
CHP (communicating hardware processes), which is a sub-
language of ACT. Several tools are available to synthesize
a design written in CHP to a gate-level netlist, including
chp2prs, and Maelstrom [13]. In this tape-out, we select
Maelstrom to obtain better-performance circuits with more
efficient control logic.

Given the gate-level netlist, the design can be placed using
Dali. PWRoute [14] is used to generate power mesh for the
placement and connect cells’ power pins to the nearest straps
by running detailed power routing. Once the design is placed
and power routed, it can be global routed with SPRoute [15],
followed by detailed routing with either TritonRoute [16]
or Innovus. The routed design is described using LEF and
DEF files.

Power ring
£ generation
o Design l
B
g l Power ring
= connection
'6 Gate-level netlist l
<
l Pin extension
Dali: gridded @
cell placer E l
5 l @ Fixing DRC
o (<] violations
g : o
= PWRoutg. % l
= power routing §
2 l Custom fill
e insertion
oute:
global routing
Magic: hidden
LEFgIgen;ration Layout finishing
-E' Detailed routing
g3 !
TR .lef .def Verilog blackbox
E L N module generation
ayout finishing
y -lef l v .gds
l .gds
Caravel Integration using OpenLane ]

Fig. 1. Overview of the ACT framework and the post-processing flow.

B. Post-processing Routed Design

Prior to integrating the routed design into the Caravel
harness using OpenLane, you must

o Add a power ring around the design

o Connect the internal power mesh to the power ring

« Extend the I/O pins

« Fix DRC violations added during routing

o Add custom fill to meet minimum density requirements

o Generate a Verilog blackbox module for the asynchronous
macro

A summary of these steps is shown highlighted in green in
Fig. 1.

1) Power Ring Generation: For some designs where all
metal layers are required for routing, the top metal layers
become obstructions while power routing when integrating
with the OpenLane flow. Thus, a power ring is added around
each asynchronous design in order to ensure connectivity
between the chip’s power grid and the local circuit’s power
connections. To generate a power grid, our flow will find the
bounding box coordinates of the circuit in Magic and generate
a TCL script to draw the power ring based on an input width
of the ring, spacing between rings for each power supply, and
an offset between the macro and the first power ring loop.

2) Power Ring Connections to Asynchronous Macro: Fur-
thermore, the macro’s power grid must be connected to the
generated power ring. To do this, we parse the DEF file to
find the locations of all power stripes. Separated into vertical
and horizontal, they are sorted by their coordinates. For each



vertical stripe, the metal can be extended to connect to the
power ring. Similarly, the horizontal power stripes on the left
and right edges are also extended.

3) Pin Extension: To include a macro in the OpenLane
flow, LEF and GDS for the design must be provided. One of
the main uses of the LEF file is to provide information about
port locations. There are various options when exporting LEF
from Magic, but we have found the “hidden” option works
best for later integrating into the caravel harness. When using
the hidden LEF file, we noticed that the connection to the pins
may yield shorts or DRC violations when merging the macro
GDS. We combated this issue by extending all of the ports
of our macro. Within the generated TCL script, this is done
automatically by parsing the LEF file for the port names and
locations (to identify which direction to extend the pin).

4) Fixing DRC Violations: For some circuits, a small num-
ber of DRC violations arise during routing. We have observed
that there are only a few types of DRC violations that appear.
It is advisable to fix the few violations after the design is
routed. Since many of the violations are of the same type,
a short TCL script can be written for each type of error to
fix the DRC. Each short script can be integrated into a single
script where each DRC violation can be found and the user
can select which correction script to run. In the case where a
new type of violation is found, the script can be easily adapted
to include a custom correction script.

5) Custom Fill: During the final steps of integrating our de-
sign in the caravel harness, minimum density DRC violations
arose. Since we had access to Calibre and the commercial
Skywater 130 PDK, we first attempted to run the commercial
fill on our design. This did not increase the density for field
oxide sufficiently. Thus, we developed custom fill scripts. As
Dali knows the locations for all of the cells, it also can
identify gaps between cells. Respecting the spacing design
rules, we can draw a maximally sized fill cell that includes
all of the necessary layers to ensure there are not low density
DRC violations in the final checks. We modified Dali and
our interact script to export this information so that we
could automate fill insertion. In our experience, the required
fill cell included diffusion and poly. An image of the generated
fill is shown in Fig. 2.

6) Verilog Blackbox Module Generation: To instantiate the
asynchronous macro in the user_project_wrapper, the user
needs to provide a verilog blackbox module. This is automati-
cally generated by parsing the LEF file to extract the design’s
name and port information.

7) Magic DRC Check: The default OpenLane flow for
integrating a macro into the Caravel harness requires that the
design be DRC clean. By default, Magic is used to check
for DRC violations. Due to reading well information from
multiple levels of hierarchy, Magic identifies numerous DRC
errors. Using Klayout and Calibre, the same GDS is DRC
clean. Therefore, in the OpenLane flow, the Magic DRC
checking step should be disabled.

Fig. 2. Fill cells generated by our tool to increase the density of field oxide
are shown as the transistor-like disconnected devices between digital cells.

IV. COMMUNICATION WITH THE DESIGN

Users should determine how to communicate with the
design using Caravel harness’s utilities. The first method is
sending and/or receiving signals through I/O pins. Since our
design is asynchronous and capable of handling asynchronous
input, no additional logic is needed. However, to mitigate
potential antenna violations, users should assign the Caravel
ports to the macro’s ports with care to minimize wire lengths.
Additionally, Dali can position the macro’s ports according
to users’ requirements, further reducing the wire length.

The other method is to use the management core in the
Caravel chip for data transfers. This method involves clock
domain crossing, therefore, we adopt standard two flip-flop
synchronizers to avoid metastability issues.

V. ASYNCHRONOUS MD5 HASHER

Using the process presented above, we have taped-out
an asynchronous MD5 hashing accelerator in the SKY130
process and integrated it into the Caravel harness.

VI. FUTURE DEVELOPMENTS

Some of our post-processing steps can be integrated with the
ACT tools. Specifically, power ring generation and connections
can be integrated with Dali. Similarly, fill insertion can
also be integrated with Dali. The main benefit for doing
this is location information is already stored in existing data
structures; thus, we will not need to parse LEF/DEF files



Fig. 3. Asynchronous MDS5 hashing accelerator in SKY 130 process integrated
into the Caravel harness.

to extract this information. Additionally, this becomes more
robust if file formats change.

ACKNOWLEDGMENT

We would like to thank Karthi Srinivasan for iterating on
Malestorm with us while designing the MDS5 Hasher, James
Jagielski for helping to route several of the SKY 130 cells, and
Jakob Jordan for verifying the cells and design.

[1]

[2]
[3]

[4]

[5]
[6]

[7]
[8]
[91
[10]

REFERENCES

J. He, W. Hua, Y.-S. Lu, S. Maleki, Y. Yang, K. Pingali, and R. Manohar,
“interact: An interactive design environment for asynchronous logic,” in
Workshop on Open-Source EDA Technology (WOSET), 2021.
“Efabless caravel,” https://caravel-harness.readthedocs.io/.

M. Shalan and T. Edwards, “Building openlane: A 130nm openroad-
based tapeout- proven flow : Invited paper,” in 2020 IEEE/ACM Inter-
national Conference On Computer Aided Design (ICCAD), 2020, pp.
1-6.

T. Ajayi, V. A. Chhabria, M. Fogaca, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Invited: Toward an open-
source digital flow: First learnings from the openroad project,” in 20/9
56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1-4.
C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.

J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor, “Magic: A
vlsi layout system,” in 21st Design Automation Conference Proceedings,
1984, pp. 152-159.

“Netgen,” http://opencircuitdesign.com/netgen/.

“Spef-extractor,” https://github.com/HanyMoussa/SPEF_EXTRACTOR.
“Klayout,” https://www.klayout.de.

Y. Yang, J. He, and R. Manohar, “Dali: A gridded cell placement
flow,” in 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD), 2020, pp. 1-9.

[11]

[12]

[13]

(14]

[15]

[16]

J. He, W. Hua, Y.-S. Lu, S. Maleki, Y. Yang, K. Pingali, and R. Manohar,
“A digital flow for asynchronous vlsi systems: Status update,” in
Workshop on Open-Source EDA Technology (WOSET), 2020.

T. Jagielski, X. Wen, and M. Dobre, “Async caravel postprocessing,”
https://github.com/ThomasJagielski/async_caravel_postprocessing.

K. Srinivasan and R. Manohar, “Maelstrom: A logic synthesis technique
for asynchronous circuits,” in International Workshop on Logic Synthesis
(poster) (IWLS), June 2024.

J. He, Y. Yang, and R. Manohar, “A power router for gridded cell
placement,” in Workshop on Open-Source EDA Technology (WOSET),
2020.

J. He, U. Agarwal, Y. Yang, R. Manohar, and K. Pingali, “Sproute 2.0:
A detailed-routability-driven deterministic parallel global router with
soft capacity,” in 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2022, pp. 586-591.

A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: The open-source
detailed router,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 3, pp. 547-559, 2021.



