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Abstract—Today, in teaching computer architecture, we use the
RISC-V instruction set to explain the basics of a microprocessor.
Initially, we introduce a conceptual single-cycle implementation
of a RISC-V microprocessor, followed by a detailed presentation
of a pipelined implementation of RISC-V. We can support this
topic in teaching with executable implementations of RISC-V.

This paper presents three implementations of the RISC-V
instruction set architecture: (1) an instruction set simulator to
explore the RISC-V instructions set, (2) a single-cycle imple-
mentation as a first approach to a hardware implementation,
and (3) a pipelined implementation of RISC-V. We named this
processor Wildcat after a nice hiking area close to where RISC-V
instruction set was developed, at the University of California,
Berkeley. Wildcat is available under the BSD 2-Clause License
at https://github.com/schoeberl/wildcat

Index Terms—Computer architecture education, RISC-V, open-
source

I. INTRODUCTION

Andrew Waterman defined the RISC-V instruction set
architecture (ISA) in his PhD thesis [13] at the University
of California, Berkeley (UCB), supervised by Krste Asanovic
and Dave Patterson. Waterman distilled the core principles of
a RISC ISA drawn from three decades of RISC architectures,
including MIPS, SPARC, and Alpha. An essential aspect of the
RISC-V ISA is that it is available in open source. Therefore,
most computer architecture teaching has switched to RISC-V
in recent years. RISC-V is an ISA definition; it does not define
an implementation. The “V” stands for the fifth RISC project
at UCB and indicates that vector instructions are a part of the
standard.

This paper presents Wildcat, a family of RISC-V processor
implementations. The project is called Wildcat, as I run through
the Wildcat canyon after listening to Andrew’s PhD defense
and before starting to code the RISC-V ISA simulator.

We present an instruction set simulator to enable students
to familiarize themself with the RISC-V instruction set ar-
chitecture (ISA) and concrete the quite small set of integer
instructions (RV32I). To teach the pipelining of a micropro-
cessor, we present a 3-stage RISC-V pipeline consisting of
instruction fetch (IF), instruction decode (ID), and instruction
execution (EX). ID includes register read, and EX includes
memory access (load and store). Although many textbooks
present a 5-stages pipeline, we think that a 3-stages pipeline is
a better and more accessible approach to teaching pipelining:
(1) the principles can be shown in three stages; (2) the design
requires forwarding, but only from one stage; (3) it avoids the

load-use hazard and the need for detection of that hazard and
the resulting stalling. While single cycle and 2-stages cannot be
practically implemented, a 3-stage pipeline can be implemented
in an FPGA (or ASIC).

The Wildcat project aims to provide educational examples of
a RISC-V simulator and a pipeline implementation. Therefore,
the code prioritizes readability and avoids performance or size
optimizations that could introduce unnecessary complexity.

For this design, we use Chisel [2], [10], a hardware
construction language embedded in Scala. Chisel is a more
modern language than VHDL or Verilog, resulting in less
distraction from archaic syntax and leading to better readable
code. From our experiences in teaching digital electronics
in VHDL and later in Chisel, we see that students with a
programming background in Java get more productive in Chisel
than in VHDL. Furthermore, editor support for Chisel (as it is
practically Scala), is better than for VHDL or Verilog.

II. A SIMULATOR

It makes sense to write a simulator for that hardware before
designing any non-trivial hardware, and a pipelined processor is
non-trivial. The simulation does not need to be cycle-accurate.
In our computer architecture course, students develop as a final
project a RISC-V ISA simulator. Writing a simulator is a good
preparation for an elective course of implementing a RISC-V
processor in an FPGA.

When I attended Andrew Waterman’s PhD defense, I decided
to learn more about RISC-V and to code an instruction set
simulator. I had already switched all my hardware activities
to Chisel, so I wrote the simulator in Scala. This has two
benefits: (1) we can co-simulate the hardware design and the
ISA simulator in the same Java virtual machine; and (2) we
can share constants between the simulator and the hardware.
The ISA simulator is around 300 lines of readable code.

Another option for a working processor pipeline is a single-
cycle implementation. As textbooks often start with a single-
cycle implementation, we also implemented a base version
of RISC-V in Chisel as a single-cycle circuit. The instruction
memory is implemented as ROM, loading the program at
simulation or hardware generation time. We use asynchronous
RAM (a Mem in Chisel) for the data memory. Due to the use of
asynchronous memory, this design is not useful for hardware
implementation, but it can serve as an ISA simulator closer to
an actual implementation. As we aim for reusable code, we
have put common functionality, such as instruction decoding,



immediate generation, and the ALU code, into functions (in the
original 3-stage pipeline). Due to this reuse, the single-cycle
implementation is just around 65 lines of code.

III. A SIMPLE PIPELINE

Figure 1 shows the simple 3-stages pipeline of Wildcat.
Instruction memory (IM), the register file (RF), and the
data memory (DM) are implemented in synchronous RAM.
Therefore, the input registers of those three memories are part
of the pipeline registers.

The first stage (IF) fetches the instruction from the instruction
memory. The instruction is stored in the instruction register
(IR). However, the two 5-bit register addresses are fed directly
from the output of the instruction memory into the (registered)
input of the RF.

The second stage (ID) decodes the instruction, generates the
immediate field, and selects between the register value and the
immediate value. Furthermore, that stage computes the address
for the memory access, by adding the immediate to the address
from the register.

The third stage (EX) performs either an ALU or memory
operation. The multiplexer at the output of EX selects whether
an ALU result or a memory load will be written into the RF.
The output of the EX stage is also registered in the ID/EX
pipeline register to forward either the ALU result or the load
result. Note that we need only one forwarding path for the
ALU. Furthermore, as the memory access is in the same stage
as the ALU operation, there is no load-use hazard and no
need to stall the pipeline, simplifying the understanding of
a pipelined processor implementation. The output of the EX
stage is also forwarded to the memory input.

The three-stage pipeline is simple to explain, simple to
implement, and surprisingly efficient. As longer pipelines need
more forwarding paths into the ALU, they also need larger
multiplexers in front of the ALU input. At least in FPGAs,
those multiplexers and the needed wires introduce a longer
critical path than in the 3-stage pipeline, resulting in a slightly
lower maximum clock frequency.

We are not arguing against longer pipelines in general.
However, for teaching pipelined processor design, a three-
stage pipeline is sufficient. This organization can also be
implemented in an FPGA. The repository also contains 4-
and 5-stage implementations for comparison.

IV. TESTING

Testing (sometimes called verification) of hardware designs
is at least as important as testing of software projects. Testing
a processor is more straightforward than a hardware design
requiring test vectors to drive a simulation. A processor can
simply execute test programs.

The RISC-V test suit1 contains an extensive list of assembler
programs. To run those tests, a considerable amount of
instructions already need to be correctly implemented.

However, when developing a simulator or a processor
pipeline,, one would like to run tests even at a very early stage.

1https://github.com/riscv-software-src/riscv-tests

TABLE I
WILDCAT RESULTS IN THREE DIFFERENT TECHNOLOGIES

Wildcat fmax (MHz) LC Register RAM bits

Altera/Intel Cyclon IV 86.2 MHz 1,756 379 2,048
AMD Artix 7 112.3 MHz 1,270 303 0

SkyWater130 81.2 MHz 429 x 432 µmm2

Therefore, we provide very simple assembler programs for
debugging and testing for our computer architecture lab.2 That
repository also contains the expected output of the register file
after termination of the simulation for each example program.

A. Self-contained Tests

Self-contained tests end with a well-known outcome, e.g.,
one register shall contain a known number. In the standard
RISC-V tests, a passed test ends with 0 in register x28, after
executing an ecall instruction. Our simulator and the hardware
implementation include tests that execute the RISC-V tests for
the RV32I specification.

B. Co-simulation

Another option for testing a processor is co-simulation.
Again, co-simulation is relatively straightforward, as the only
state that needs to be compared is the content of the register
file. Any error in the pipeline or the memory subsystem will,
at some point, emerge in the register file.

We can execute co-simulation and compare results at every
instruction or, similar to the simple tests, compare the content of
the register file at the end of the test execution. We implemented
the comparison after exiting the simulator and the hardware
simulation. If discrepancies exist between those two simulations,
a trace file for the register contents can be generated to find
the spot where the results diverged.

V. EVALUATION

Although the main focus of Wildcat on being an educational
RISC-V implementation, we still want to be able to implement
Wildcat in an FPGA or ASIC.

A. Reading Complexity

For the implementations of the different versions of Wildcat,
we aimed at sharing as much code as possible without
obfuscating the code. We defined all constants in Scala land
to be used in the simulator and with type conversion in the
Chisel hardware implantation.

We are also able to share a considerable amount of Chisel
code implemented in functions, between the versions of Wildcat:
from the single-cycle version up to a 5-stage implementation.

B. Synthesis Results

We evaluate the 3-stage pipeline of Wildcat in two FPGA
families and for an ASIC using the open-source SkyWater130
PDK (130 nm process node) and the open-source OpenLane 2

2https://github.com/schoeberl/risc-v-lab

https://github.com/riscv-software-src/riscv-tests
https://github.com/schoeberl/risc-v-lab
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Fig. 1. The 3-stage Wildcat processor pipeline (simplified, omitting control and decoded signals).

design flow. As we do not (yet) have memory compilers
available in open-source for the SkyWater130 process, we
synthesize the pipeline alone and leave out the instruction and
data memory. Those memories are connected with memory
buses. For the evaluation within an FPGA, we use a preloaded
instructions scratchpad memory and a data scratchpad memory.

For the FPGA results, we use synchronous on-chip memory
(BRAM) for the RF. In the ASIC design, we implement the
RF in discrete flip-flops.

The two FPGAs are: (1) a bit date Cyclone IV FPGA (from
former Altera, then Intel, now Altera again) and (2) the Artix 7
(from former Xilinx, now AMD). A logic cell (LC) in the
Cyclone IV contains a 4-bit lookup table (LUT) and a flip-flop.
The Artix 7 is a more recent FPGA using 6-bit LUTs. For
each LUT, the Artix includes two flip-flops. We constrain both
designs to an unreachable 200 MHz to push the synthesis tools
to optimize for maximum clock frequency.

For the ASIC flow, we use OpenLane2 and let the tool
decide on the area needed. We report that area in the table.
The ASIC flow with OpenLane will not finish when the timing
constraint is not met. Therefore, we set it to a frequency of
50 MHz.

We report the maximum clock frequency for the slowest
timing voltage/temperature point. We report the ASIC size from
the report after floor planning (in Report 12 floorplan). For
the ASIC, we can find the slack after placement and routing
in report 51 (stapostpnr).

Table I shows the synthesis results with maximum clock
frequency and resource usage in LCs, register, and on-chip
RAM bits. For the Cyclone IV, we see the expected usage of
2048 RAM bits for the register file. One set of 32x32 bits
uses 1024 bits, and to support two read ports, we need two
memories. The Artix FPGA can use LUTs for small memories,
and Vivado decided not to use BRAM resources. Therefore,
we do not see any RAM bits used for the Artix.

For ASIC flow, we report the size of the chip area. To set
the area of 0.18 mm2 in context: one can get a 10 mm2 chip

on a multi-project waver from eFabless for $ 10.000.
As we assume that the flip-flop-based RF needs the most

amount of chip area, we explored the synthesis of the RF alone,
resulting in an area of around 320 x 320 µmm2. Therefore, for
this simple 3-stage pipeline, the RF dominates the resource
usage as it needs about 55 % of the processor area. We tried
to use a latch-based RF design, but without any further tweaks
in the OpenLane2 design flow, yosys stopped with more than
900 errors. To improve this situation, we need an open-source
memory compiler. We are aware of the OpenRAM [5] project
but have not been able to generate memory from that project.

If we can scale down the area of the RF, we plan to submit
Wildcat to the next Tiny Tapeout [12] shuttle. We also plan
to use Tiny Tapeout in our new chip design course. Therefore,
the experience of getting a RISC-V pipeline into a reasonable
number of Tiny Tapeout tiles is a preparation for this course.

Out of curiosity, we also synthesized the single-cycle
implementation of Wildcat with a blinking LEDs program
into the Artix FPGA. Most of the hardware was optimized
away, and the maximum clock frequency reported was around
11 MHz. Nevertheless, we configured the FPGA, and the LEDs
were blinking.

C. Source Access

Wildcat is available in open source on GitHub: https://github.
com/schoeberl/wildcat. All tests can be run with:

make test

Several other Makefile targets are available to generate
Verilog code and to synthesize with Vivado, Quartus, or
OpenLane.

VI. FUTURE WORK AND TEACHING

I have taught computer architecture for more than 15 years
following the classic textbooks [8], [7]. When teaching the
pipeline of a RISC processor, I used, without questioning, the
classic 5-stages organization. With my recent work on Wildcat,

https://github.com/schoeberl/wildcat
https://github.com/schoeberl/wildcat


I will reconsider which organization I will present to initially.
In future teaching,, I will present a 3-stages pipeline to explain
the principles. I will use the implementation of Wildcat to
illustrate that this is a reasonable and valid organization. Later,
we can discuss other organizations, e.g., the classic 5-stages
pipeline or longer organizations.

For the computer architecture course at DTU, we teach the
students RISC-V assembler programming, and they have to
implement as the final project a RISC-V ISA simulator. For this
lab, we have prepared material, such as small test programs in
open-source on GitHub: https://github.com/schoeberl/cae-lab.
We have used those simple test programs also with our Wildcat
implementations.

As a followup to the computer architecture course, we have
established a new course on designing and implementing
a RISC-V pipeline in an FPGA. Again, all material is
open-source on GitHub: https://github.com/schoeberl/risc-v-lab.
This repository contains further tests, some from the Ripes
project [9] and simplified versions of the RISC-V tests. In
this three-week course, students shall implement a RISC-V
from scratch in an FPGA. To provide an example, we can use
Wildcat and the design of a 3-stage pipeline.

I am teaching Digital Electronics 2 for second-semester
students. There we use Chisel [2] as the hardware description
language. In that course I use the Chisel book [10].3 The
final chapter describes the design of a simple processor
called Leros [11]. The Leros implementation is a simple state
machine with a datapath. We plan to add another chapter
on implementing a pipelined RISC-V processor, and Wildcat
will be an example of that implementation. However, both
processors are not the topic of the second-semester introduction
course, but make good ending chapters in a book on digital
design.

Altogether, we are moving our digital design education to
use open-source IPs and open-source tools, such as OpenLane.
Furthermore, we are developing a new chip design course where
we have planned to provide all teaching material in open-source
at: https://github.com/os-chip-design/chip-design-intro

VII. RELATED WORK

One of the first hardware implementation of a RISC-V
processor was Rocket [1]. Rocket is implemented in Chisel
and represents a 5-stage in-order scalar pipeline. For teaching
purposes, a group of PhD students developed the Sodor family
of RISC-V processors. Sodor4 is available as single-stage, 2-
stage, 3-stage, up to a classic 5-stage version. Sodor is written
in Chisel. However, some of the code is quite advanced Scala
code, which is not an easy read for beginners of computer
architecture and Chisel. Furthermore, the Sodor project is no
longer self-contained. It needs the Chipyard SoC generator
that has an elaborate setup. In contrast to Sodor, Wildcat is
available in standalone, and we have put effort into producing
readable code.

3available in open-source at: https://github.com/schoeberl/chisel-book
4https://github.com/ucb-bar/riscv-sodor

YARVI (Yet Another RISC-V Implementation) 5 by Tommy
Thorn was probably the first RISC-V implementation that
could be synthesized into an FPGA (originally released in
2014). The current version of YARI, called YARVI2, is an
8-stage pipeline with an effort on branch prediction. In future
work, we will take inspiration from YARVI to extend Wildcat to
longer pipelines and add branch prediction. The main challenge
in those extensions is to reuse code without duplication, and
without disturbing readability.

PULPino [4] is a 32-bit RISC-V microcontroller system
developed at ETH Zurich. It is written in SystemVerilog in
a conservative style (e.g., not using structures but individual
signals.) We appreciate that project but consider it too complex
for education or research.

Ibex [3]6 is a two-stage pipeline with an additional clock
cycle for memory access. Therefore, similar in design to our
Wildcat project. The pipeline can be extended with a write-back
stage.

PicoRV327 is a RISC-V implementation optimized for small
size and a high clocking frequency but not for execution
speed. The implementation is sequential, with instructions
executing between 3 and 14 clock cycles. The single Verilog
file picorv32.v is about 3000 lines of Verilog code, which is not
an easy reading. We may add a sequential version of Wildcat
to our family of processors if this is still an interesting design
point (we found one textbook containing a sequential design
of a RISC-V microprocessor [6]).

Morten, a former student at DTU, developed Ripes [9], a
graphical simulator for different configurations of a RISC-
V pipeline. We use Ripes to educate students in computer
architecture.

There exist many RISC-V implementations both in open-
source and commercial closed-source. Exploring all the open-
source designs would probably be an educational exercise,
resulting in a lengthy survey paper.

VIII. CONCLUSION

For teaching computer architecture and digital design, good
readable reference implementations of RISC-V are a helpful
tool. We have implemented several versions of RISC-V: an
instruction set simulator, a single cycle version, a 3-stage
pipeline, 4-and 5-stage versions. This project aims to provide
easily readable code that can be used as example code in
teaching.
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